Structure and property of lead-free (K,Na)NbO3–(Bi1/2Na1/2)ZrO3–CaTiO3 piezoelectric ceramics

  • Nan Zhang
  • Jiagang WuEmail author


Simultaneous improvement of piezoelectricity and temperature stability is vital for developing high-performance KNN-based lead-free materials. Here, effects of CaTiO3 on phase structure, piezoelectricity and temperature stability of (1 – x)[0.95(K0.5Na0.5)NbO3–0.05(Bi0.5Na0.5)ZrO3]–xCaTiO3–0.2%MnO2 ceramics were studied. It was found that the orthorhombic-tetragonal phase transition temperature can be gradually decreased by increasing CaTiO3 content. Particularly, the improved strain temperature stability (strain varied < 15% when measurement temperature reaches 110 °C) and enhanced electrical properties (d33 ~ 296 pC/N and strain ~ 0.14%) can be observed in the ceramics with x = 0.02. Therefore, shifting the TO−T below room temperature is an effective way to promote temperature stability and electrical properties of KNN-based piezoelectric materials.



Authors gratefully acknowledge the supports of the National Science Foundation of China (NSFC No. 51722208 and 51332003). We thank Hui Wang for measuring the SEM patterns.


  1. 1.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)CrossRefGoogle Scholar
  2. 2.
    G. Busch, Early history of ferroelectricity. Ferroelectrics 74(1), 267–284 (1987)CrossRefGoogle Scholar
  3. 3.
    J. Fousek, Ferroelectricity: remarks on historical aspects and present trends. Ferroelectrics 113(11), 3–20 (1991)CrossRefGoogle Scholar
  4. 4.
    K. Wang, B. Malic, J.G. Wu, Shifting the phase boundary: potassium sodium niobate derivates. MRS Bull. 43(8), 607–611 (2018)CrossRefGoogle Scholar
  5. 5.
    E. Cross, Materials science-lead-free at last. Nature 432(7013), 24–25 (2004)CrossRefGoogle Scholar
  6. 6.
    J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium-sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. Chem. Rev. 115(7), 2559–2595 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Koruza, A.J. Bell, T. Fromling et al., Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics 4(1), 13–26 (2018)CrossRefGoogle Scholar
  8. 8.
    T.M. Amaral, E. Antonelli, D.A. Ochoa et al., Microstructural features and functional properties of bilayered BaTiO3/BaTi1 – xZrxO3 ceramics. J. Am. Ceram. Soc. 98(4), 1169–1174 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Nagata, T. Takenaka, Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 21(10), 1299–1302 (2001)CrossRefGoogle Scholar
  10. 10.
    L. Egerton, D.M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J. Am. Ceram. Soc. 42(9), 438–442 (1959)CrossRefGoogle Scholar
  11. 11.
    N.S. Zhao, H.Q. Fan, X.H. Ren et al., Dielectric, conductivity and piezoelectric properties in (0.67-x)BiFeO3-0.33BaTiO3-xSrZrO3 ceramics. Ceram. Int. 44(15), 18821–18827 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Murakami, D.W. Wang, A. Mostaed et al., High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc. 101(12), 5428–5442 (2018)CrossRefGoogle Scholar
  13. 13.
    D.W. Wang, A. Khesro, S. Murakami et al., Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 37(4), 1857–1860 (2017)CrossRefGoogle Scholar
  14. 14.
    D.W. Wang, Z.M. Fan, D. Zhou et al., Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6(9), 4133–4144 (2018)CrossRefGoogle Scholar
  15. 15.
    D.W. Wang, Z.M. Fan, W.B. Li et al., High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics. ACS Appl. Energy Mater. 1(8), 4403–4412 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Murakami, N.T.A.F. Ahmed, D.W. Wang et al., Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc. 38(12), 4220–4231 (2018)CrossRefGoogle Scholar
  17. 17.
    B. Hu, A.Q. Fan, L. Ning et al., Enhanced energy-storage performance and dielectric teemperature stability of (1-x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram. Int. 44(9), 10968–10974 (2018)CrossRefGoogle Scholar
  18. 18.
    G.Z. Dong, H.Q. Fan, J. Shi et al., Composition-and temperature-dependent large strain in (1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaNbO3 ceramics. J. Am. Ceram. Soc. 98(4), 1150–1155 (2015)CrossRefGoogle Scholar
  19. 19.
    N.S. Zhao, H.Q. Fan, X.H. Ren et al., A Novel ((Bi0.5Na0.5)0.94Ba0.06)1–x(K0.5Nd0.5)xTiO3 lead-free relaxor ferroelectric ceramic with large electrostrains at wide temperature ranges. Ceram. Int. 44(1), 571–579 (2018)CrossRefGoogle Scholar
  20. 20.
    N.S. Zhao, H.Q. Fan, J.W. Ma et al., Large strain of temperature insensitive in(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xSr0.7La0.2TiO3 lead-free ceramics. Ceram. Int. 44(10), 11331–11339 (2018)CrossRefGoogle Scholar
  21. 21.
    T. Zheng, J.G. Wu, D.Q. Xiao et al., Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)CrossRefGoogle Scholar
  22. 22.
    L. Fu, L. Lin, Y.R. Luo et al., Development of the electrical properties of KNN-based lead-free piezoceramics based on the phase boundary building and ternary composition designing. Mater. Res. Bull. 94, 506–512 (2017)CrossRefGoogle Scholar
  23. 23.
    X.P. Wang, J.G. Wu, D.Q. Xiao et al., Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)CrossRefGoogle Scholar
  24. 24.
    X.P. Wang, J.G. Wu, X.J. Cheng et al., Compositional dependence of phase structure and electrical properties in (K0.5Na0.5)0.75Bi0.01(Nb1 – xZrx)O3 lead-free ceramics. Ceram. Int. 39, 8021–8024 (2013)CrossRefGoogle Scholar
  25. 25.
    K. Xu, J. Li, X. Lv et al., Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)CrossRefGoogle Scholar
  26. 26.
    Z. Wang, D.Q. Xiao, J.G. Wu et al., New lead-free (1-x)(K0.5Na0.5)NbO3-x(Bi0.5Na0.5)ZrO3 ceramics with high piezoelectricity. J. Am. Ceram. Soc. 97(3), 688–690 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Tan, H. Tian, C.P. Hu et al., Field-driven electro-optic dynamics of polar nanoregions in nanodisordrerd KTa1–xNbxO3 crustal. Appl. Phys. Lett. 111(1), 012903 (2017)CrossRefGoogle Scholar
  28. 28.
    P. Tan, H. Tian, C.P. Hu et al., Temperature field driven polar nanoregions in KTa1 – xNbxO3. Appl. Phys. Lett. 109(25), 252904 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Li, D.B. Lin, Z.B. Chen et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17(4), 349–354 (2018)CrossRefGoogle Scholar
  30. 30.
    F. Li, S.J. Zhang, T.N. Yang et al., The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016)CrossRefGoogle Scholar
  31. 31.
    F. Li, S.J. Zhang, D. Damjanovic et al., Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv. Funct. Mater. 28(37), 1801504 (2018)CrossRefGoogle Scholar
  32. 32.
    F.Z. Yao, Q. Yu, K. Wang et al., Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. RSC. Adv. 4, 20062–20068 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Z, W.J. Wu, J.G. Wu et al., Balanced development of piezoelectricity, curie temperature, and temperature stability in potassium-sodium niobate lead-free ceramics. J. Mater. Chem. C. 4, 9779–9787 (2016)CrossRefGoogle Scholar
  34. 34.
    R. Wang, K. Wang, F.Z. Yao et al., Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J. Am. Ceram. Soc. 98(7), 2177–2182 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Wang, F.Z. Yao, W. Jo et al., Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater. 23(33), 4079–4086 (2013)CrossRefGoogle Scholar
  36. 36.
    F.Z. Yao, K. Wang, W. Jo et al., Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 26, 1217–1224 (2016)CrossRefGoogle Scholar
  37. 37.
    S.J. Zhang, R. Xia, T.R. Shrout, K0.5Na0.5NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl. Phys. Lett. 91, 132913 (2007)CrossRefGoogle Scholar
  38. 38.
    J.G. Wu, D.Q. Xiao, Y.Y. Wang et al., CaTiO3-modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91(10), 3402–3404 (2008)CrossRefGoogle Scholar
  39. 39.
    X. Lv, J.G. Wu, S. Yang et al., Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate based ceramics. ACS Appl. Mater. Interfaces 8, 18943–18953 (2016)CrossRefGoogle Scholar
  40. 40.
    X.J. Cheng, J.G. Wu, T. Zheng et al., Rhombohedral-tetragonal phase coexistence and piezoelectric properties based on potassium-sodium niobate ternary system. J. Alloys Compd. 610, 86–91 (2014)CrossRefGoogle Scholar
  41. 41.
    D.W. Wang, F. Hussain, A. Khesro et al., Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1–yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc. 100(2), 627–637 (2017)CrossRefGoogle Scholar
  42. 42.
    J.S. Zhou, K. Wang, F.Z. Yao et al., Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J. Mater. Chem. C 3(34), 8780–8787 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations