Advertisement

Properties of spray deposited ZnSxSe1−x thin films for photoelectrochemical solar cell application

  • Nandkishor M. Patil
  • Santosh G. Nilange
  • Abhijit A. YadavEmail author
Article
  • 44 Downloads

Abstract

The wide band gap II–VI group materials have been extensively studied for optoelectronic applications. The polycrystalline zinc sulphoselenide (ZnSxSe1−x) thin films have been spray deposited onto FTO coated glass substrates at temperature of 275 °C. PEC cells were formed with n-ZnSxSe1−x thin films/1 M (NaOH + Na2S + S)/C configuration to study various photoelectrochemical properties. The study signifies n-type conductivity of ZnSxSe1−x thin films. Significant photoelectrochemical response has been witnessed for the films deposited with x = 0.2 composition. The flat band potential of − 1.09 V has been observed for ZnS0.2Se0.8 thin film. The junction ideality factors in dark and under radiance are found to be 1.37 and 1.32 respectively. ZnS0.2Se0.8 thin films produces 268 mV open circuit voltage and 816 µA cm−2 short circuit current subsequent to efficiency and fill factor of 1.27% and 0.58 respectively. Spectral response characteristics display a sharp peak at 425 nm for x = 0.2, resulting in a band gap of 2.92 eV. These results imply that change in composition ‘x’ has substantial effect on the photovoltaic properties.

References

  1. 1.
    E. Abdel-Fattah, I.A. Elsayed, T. Fahmy, J. Mater. Sci.: Mater. Electron. 29, 19942–19950 (2018)Google Scholar
  2. 2.
    F.J. Ochoa-Estrella, A. Vera-Marquina, I. Mejia, A.L. Leal-Cruz, M.I. Pintor-Monroy, M. Quevedo-López, J. Mater. Sci.: Mater. Electron. 29, 20623–20628 (2018)Google Scholar
  3. 3.
    M.A. Khan, R. Singh, S. Mukherjee, Review of II-VI based compounds for transistor applications, reference module in Materials Science and Materials Engineering (2018)Google Scholar
  4. 4.
    W. Mahmood, J. Ali, I. Zahid, A. Thomas, A. ul Haq, Optik 158, 1558–1566 (2018)CrossRefGoogle Scholar
  5. 5.
    P. Gu, X. Zhu, J. Li, H. Wu, D. Yan, J. Mater. Sci.: Mater. Electron. 29, 14635–14642 (2018)Google Scholar
  6. 6.
    S. Yılmaz, İ Polat, M. Tomakin, S.B. Töreli, T. Küçükömeroğlu, E. Bacaksız, J. Mater. Sci.: Mater. Electron. 29, 14774–14782 (2018)Google Scholar
  7. 7.
    B. Wang, B. Li, T. Shen, M. Li, J. Tian, J. Energy Chem. 27, 736–741 (2018)CrossRefGoogle Scholar
  8. 8.
    D.A. Barlow, J Crystal Growth 479, 93–97 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Gratzel, Philos. Trans. R. Soc. A 365, 993–1005 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Shirazi, M.R. Toroghinejad, R. Sabet Dariani, M.T. Hosseinnejad, J. Mater. Sci.: Mater. Electron. 29, 10092–10101 (2018)Google Scholar
  11. 11.
    S. Tiwaria, S. Tiwari, Sol. Energy Mater. Sol. Cells 90, 1621–1628 (2006)CrossRefGoogle Scholar
  12. 12.
    G. Hodes, Nature 285, 29–30 (1980)CrossRefGoogle Scholar
  13. 13.
    M. Isshiki, J. Wang, Wide-Bandgap II-VI Semiconductors: Growth and Properties, Springer Handbook of Electronic and Photonic Materials (Springer, Cham, 2017).  https://doi.org/10.1007/978-3-319-48933-9_16 Google Scholar
  14. 14.
    C. Gao, L. Liu, J. Mater. Sci.: Mater. Electron. 28, 14417–14423 (2017)Google Scholar
  15. 15.
    J. Li, J. Xu, W. Li, H. Shen, J. Mater. Sci.: Mater. Electron. 29, 17503–17507 (2018)Google Scholar
  16. 16.
    Y.P. Venkata Subbaiah, P. Prathap, K.T.R. Reddy, D. Mangalaraj, K. Kim, J. Yi, J. Phys. D 40, 3683–3688 (2007)CrossRefGoogle Scholar
  17. 17.
    R. Mendil, Z. Ben Ayadi, C. Vázquez-Vázquez, M.A. López-Quintela, K. Djessas, J. Mater. Sci.: Mater. Electron. 29, 10656–10662 (2018)Google Scholar
  18. 18.
    Y.P. Venkata Subbaiah, P. Prathap, K.T. Ramakrishna Reddy, R.W. Miles, J. Yi, Thin Solid Films 516, 7060–7064 (2008)CrossRefGoogle Scholar
  19. 19.
    A.A. Ojo, I.M. Dharmadasa, Sol. Energy 158, 721–727 (2017)CrossRefGoogle Scholar
  20. 20.
    R.G. Valeev, E.A. Romanov, V.L. Vorobiev, V.V. Mukhgalin, V.V. Kriventsov, A.I. Chukavin, B.V. Robouch, Mater. Res. Express 2, 025006 (2015).  https://doi.org/10.1088/2053-1591/2/2/025006 CrossRefGoogle Scholar
  21. 21.
    K.T. Ramakrishna Reddy, Y.V. Subbaiah, T.B.S. Reddy, D. Johnston, I. Forbes, R.W. Miles, Thin Solid Films 431–432, 340–343 (2003)CrossRefGoogle Scholar
  22. 22.
    C. Dhanemozhi, R. John, K.R. Murali, Mater. Today: Proc. 4, 5185–5189 (2017)CrossRefGoogle Scholar
  23. 23.
    P.S. Patil, Mater. Chem. Phys. 59, 185–198 (1999)CrossRefGoogle Scholar
  24. 24.
    Y.P. Venkata Subbaiah, K.T. Ramakrishna Reddy, Mater. Chem. Phys. 92, 448–452 (2005)CrossRefGoogle Scholar
  25. 25.
    S. Chandra, R.K. Pandey, Phys. Status Solidi (a) 73, 415–454 (1982)CrossRefGoogle Scholar
  26. 26.
    A.A. Yadav, M.A. Barote, E.U. Masumdar, Mater. Chem. Phys. 121, 53–57 (2010)CrossRefGoogle Scholar
  27. 27.
    A.A. Yadav, E.U. Masumdar, Mater. Res. Bull. 45, 1455–1459 (2010)CrossRefGoogle Scholar
  28. 28.
    N.M. Patil, S.G. Nilange, A.A. Yadav, Thin Solid Films 664, 19–26 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Khelifi, A. Attaf, H. Saidi, A. Yahia, M. Dahnoun, A. Saadi, Optik—Int. J. Light Electron Opt. 127, 11055–11062 (2016)CrossRefGoogle Scholar
  30. 30.
    A.S. Rajbhoj, S.T. Gaikwad, J.T. Deshmukh, V.M. Bhuse, Arch. Appl. Sci. Res. 4, 951–959 (2012)Google Scholar
  31. 31.
    R.N. Pandey, K.S. Chandra Babu, O.N. Srivastava, Prog. Surf. Sci. 52, 125–192 (1996)CrossRefGoogle Scholar
  32. 32.
    Y. Kuang, T. Yamada, K. Domen, Joule 1, 290–305 (2017)CrossRefGoogle Scholar
  33. 33.
    D.S. Ginley, M.A. Butler, Charge-transfer processes in photoelectrochemical cells, in Photoeffects at Semiconductor-Electrolyte Interfaces, ACS Symposium Series, ed. by A. Nozik (American Chemical Society: Washington, DC, 1981).  https://doi.org/10.1021/bk-1981-0146.ch005 Google Scholar
  34. 34.
    R.H. Wilson, Crit. Rev. Solid State Mater. Sci. 10, 1–41 (1980)CrossRefGoogle Scholar
  35. 35.
    P.P. Hankare, P.A. Chate, P.A. Chavan, D.J. Sathe, J. Alloys Compd. 461, 623–627 (2008)CrossRefGoogle Scholar
  36. 36.
    B. Iandolo, H. Zhang, B. Wickman, I. Zorić, G. Conibeer, A. Hellman, RSC Adv. 5, 61021–61030 (2015)CrossRefGoogle Scholar
  37. 37.
    A.A. Yadav, E.U. Masumdar, J. Alloys Compd. 509, 5394–5399 (2011)CrossRefGoogle Scholar
  38. 38.
    L.P. Deshmukh, V.S. Sawant, P.P. Hankare, Sol. Cells 31, 549–557 (1991)CrossRefGoogle Scholar
  39. 39.
    A.A. Yadav, E.U. Masumdar, Sol. Energy 84, 1445–1452 (2010)CrossRefGoogle Scholar
  40. 40.
    P.K. Mahapatra, A.R. Dubey, Sol. Energy Mater. Sol. Cells 32, 29–35 (1994)CrossRefGoogle Scholar
  41. 41.
    I.C. Kaya, S. Akin, H. Akyildiz, S. Sonmezoglu, Sol. Energy 169, 196–205 (2018)CrossRefGoogle Scholar
  42. 42.
    H.J. Moller, Prog. Mater. Sci. 35, 205–418 (1991)CrossRefGoogle Scholar
  43. 43.
    S. Das, K.C. Mandal, R.N. Bhattacharya, Chapter 2 earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) solar cells, in Semiconductor Materials for Solar Photovoltaic Cells, ed. by M.P. Paranthaman et al. (Springer, Cham, 2016).  https://doi.org/10.1007/978-3-319-20331-7_2 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thin Film Physics Laboratory, Department of Physics, Electronics and PhotonicsRajarshi Shahu Mahavidyalaya, (Autonomous)LaturIndia

Personalised recommendations