Exchange-coupling behavior in soft/hard Li0.3Co0.5Zn0.2Fe2O4/SrFe12O19 core/shell composite synthesized by the two-step ball-milling-assisted ceramic process

  • Wen Chen
  • Chengyue Xiao
  • Chen Huang
  • Xuehang WuEmail author
  • Wenwei WuEmail author
  • Qiangshuai Wang
  • Jintao Li
  • Kaiwen Zhou
  • Yifan Huang


Soft/hard xLi0.3Co0.5Zn0.2Fe2O4@(1 − x)SrFe12O19 (x = 0.1, 0.2, and 0.3) core/shell magnetic composites have been synthesized by the two-step ball-milling-assisted ceramic process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer are employed to analysis of structural and magnetic features of synthesized samples. The analysis of XRD indicates the formation of hard/soft ferrite composites in combination with a small amount of the α-Fe2O3 phase. FT-IR analysis confirms the formation of soft/hard Li0.3Co0.5Zn0.2Fe2O4@SrFe12O19 ferrite composite with core/shell structure. Single smooth hysteresis loops of composites show the presence of exchange-coupling between hard and soft magnetic phases. Exchange-coupling behavior between hard and soft magnetic phases is also confirmed by the switching field distribution curves. Ferrite composite with 3.0:7.0 mass ratio of soft-to-hard magnetic phase has the highest specific saturation magnetization value (74.08 emu/g). The specific saturation magnetization (Ms) of ferrite composites is markedly increased compared with Li0.3Co0.5Zn0.2Fe2O4 and/or SrFe12O19. This is attributed to the exchange-coupling interaction between the hard and soft phases due to formation of core/shell structure. Two-step ball-milling-assisted ceramic process could be considered as a suitable method for synthesizing exchange-coupled magnet.



This study was financially supported by Innovation Project of Guangxi Graduate Education (Grant No. YCBZ2018009), Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (Grant No. GXYSOF1807), and the Guangxi University Student Innovation Foundation of China (Grant No. 201810593187).


  1. 1.
    P. Kaur, S. Bahel, S. Bindra Narang, Mater. Res. Bull. 100, 275–281 (2018)CrossRefGoogle Scholar
  2. 2.
    M.A.P. Buzinaro, N.S. Ferreira, F. Cunha, M.A. Macêdo, Ceram. Int. 42, 5865–5872 (2016)CrossRefGoogle Scholar
  3. 3.
    C.C. Liu, X.S. Liu, S.J. Feng, K.M. Ur Rehman, M.L. Li, C. Zhang, H.H. Li, X.Y. Meng, J. Magn. Magn. Mater. 445, 1–5 (2018)CrossRefGoogle Scholar
  4. 4.
    Y.J. Yang, F.H. Wang, D.H. Huang, J.X. Shao, J. Tang, K.M.Ur Rehman, Z. Wu, J. Magn. Magn. Mater. 452, 100–107 (2018)CrossRefGoogle Scholar
  5. 5.
    C.X. Cao, X. Li, B.Y. Luo, Y. Li, A.J. Zhang, A.L. Xia, J. Supercond. Nov. Magn. 31, 1247–1251 (2018)CrossRefGoogle Scholar
  6. 6.
    R. Kesavamoorthi, R. Roop Kumar, C. Ramachandra Raja, J. Supercond. Nov. Magn. 31, 1259–1264 (2018)CrossRefGoogle Scholar
  7. 7.
    E. Roohani, H. Arabi, R. Sarhaddi, A. Shabani, J. Supercond. Nov. Magn. 31, 1607–1613 (2018)CrossRefGoogle Scholar
  8. 8.
    W. Chen, W.W. Wu, M.Y. Li, C. Zhou, S.F. Zhou, J. Mater. Sci.: Mater. Electron. 29, 8020–8030 (2018)Google Scholar
  9. 9.
    W.W. Wu, J.C. Cai, X.H. Wu, S. Liao, A.G. Huang, Powder Technol. 215–216, 200–205 (2012)Google Scholar
  10. 10.
    A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M. Jadhav, J. Alloys Compd. 691, 343–354 (2017)CrossRefGoogle Scholar
  11. 11.
    L.Q. Qin, M.L. Gao, W.W. Wu, S.Q. Ou, K.T. Wang, B. Liu, X.H. Wu, Ceram. Int. 40, 10857–10866 (2014)CrossRefGoogle Scholar
  12. 12.
    X.H. Wu, W. Chen, W.W. Wu, Y.Y. Chen, T.W. Li, C.Y. Zhang, H.X. Zhang, J. Mater. Sci. 52, 10085–10097 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Dong, Y. Zhang, X.L. Zhang, Q.F. Liu, J.B. Wang, Mater. Lett. 120, 9–12 (2014)CrossRefGoogle Scholar
  14. 14.
    W.J. Feng, H.L. Liu, P.F. Hui, H. Yang, J. Li, J.S. Wang, Integr. Ferroelectr. 152, 120–126 (2014)CrossRefGoogle Scholar
  15. 15.
    A.L. Xia, S.Z. Ren, C.H. Zuo, L.J. Zhang, M.F. Xie, Y. Deng, R.N. Wu, W. Xu, C.G. Jin, X.G. Liu, RSC Adv. 4, 18885–18888 (2014)CrossRefGoogle Scholar
  16. 16.
    M.A. Radmanesh, S.A. Seyyed Ebrahimi, J. Magn. Magn. Mater. 324, 3094–3098 (2012)CrossRefGoogle Scholar
  17. 17.
    R. Xiong, W.W. Li, C.L. Fei, Y. Liu, J. Shi, Ceram. Int. 42, 11913–11917 (2016)CrossRefGoogle Scholar
  18. 18.
    H.B. Yang, T. Ye, Y. Lin, M. Liu, P. Kang, G. Zhang, Mater. Chem. Phys. 171, 27–32 (2016)CrossRefGoogle Scholar
  19. 19.
    H.B. Yang, M. Liu, Y. Lin, Y.Y. Yang, J. Alloys Compd. 631, 335–339 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Poorbafrani, H. Salamati, P. Kameli, Ceram. Int. 41, 1603–1608 (2015)CrossRefGoogle Scholar
  21. 21.
    J.Y. Xia, Y. Ning, Y.H. Luo, W. Chen, X.H. Wu, W.W. Wu, Q.Z. Li, K.T. Li, J. Mater. Sci.: Mater. Electron. 29, 13903–13913 (2018)Google Scholar
  22. 22.
    J.Y. Xia, Y.L. Shen, C.Y. Xiao, W. Chen, X.H. Wu, W.W. Wu, Q.S. Wang, J.T. Li, J. Electron. Mater. 47, 6811–6820 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Tyagi, P. Verma, H.B. Baskey, R.C. Agarwala, V. Agarwala, T.C. Shami, Ceram. Int. 38, 4561–4571 (2012)CrossRefGoogle Scholar
  24. 24.
    X.Q. Shen, F.Z. Song, J. Xiang, M.Q. Liu, Y.W. Zhu, Y.D. Wang, J. Am. Ceram. Soc. 95, 3863–3870 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Tyagi, H.B. Baskey, R.C. Agarwala, V. Agarwala, T.C. Shami, Ceram. Int. 37, 2631–2641 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Mehdipour, H. Shokrollahi, J. Appl. Phys. 114, 043906 (2013)CrossRefGoogle Scholar
  27. 27.
    L.Y. Zhang, Z.W. Li, J. Alloys Compd. 469, 422–426 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Esir, Y. Junejo, A. Baykal, M. Toprak, H. Sözeri, J. Inorg. Organomet. Polym. 24, 722–728 (2014)CrossRefGoogle Scholar
  29. 29.
    D.T.M. Hue, P. Lampen, T.V. Manh, V.D. Viet, H.D. Chinh, H. Srikanth, M.H. Phan, J. Appl. Phys. 114, 123901 (2013)CrossRefGoogle Scholar
  30. 30.
    F.Z. Song, X.Q. Shen, M.Q. Liu, J. Xiang, J. Solid State Chem. 185, 31–36 (2012)CrossRefGoogle Scholar
  31. 31.
    K.W. Zhou, W. Chen, X.H. Wu, W.W. Wu, C.W. Lin, J. Wu, J. Electron. Mater. 46, 4618–4626 (2017)CrossRefGoogle Scholar
  32. 32.
    X.H. Wu, W. Chen, W.W. Wu, J. Wu, Q. Wang, J. Magn. Magn. Mater. 453, 246–253 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Chen, W.W. Wu, M.M. Mao, C. Zhou, S.F. Zhou, M.Y. Li, Q. Wang, J. Supercond. Nov. Magn. 30, 707–714 (2017)CrossRefGoogle Scholar
  34. 34.
    W. Chen, Y. Zhou, J.Y. Lu, X.S. Huang, W.W. Wu, C.W. Lin, Q. Wang, Ceram. Int. 42, 1114–1121 (2016)CrossRefGoogle Scholar
  35. 35.
    X.S. Huang, Y. Zhou, W.W. Wu, J.W. Xu, S.Q. Liu, D.S. Liu, J. Wu, J. Electron. Mater. 45, 3113–3120 (2016)CrossRefGoogle Scholar
  36. 36.
    L. Avazpour, M.A. Zandi Khajeh, M.R. Toroghinejad, H. Shokrollahi, J. Alloys Compd. 637, 497–503 (2015)CrossRefGoogle Scholar
  37. 37.
    L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.A. Zandi, Khajeh, J. Alloys Compd. 662, 441–447 (2016)CrossRefGoogle Scholar
  38. 38.
    V.C. Chavan, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.S. More, J. Magn. Magn. Mater. 398, 32–37 (2016)CrossRefGoogle Scholar
  39. 39.
    G.R. Gordani, A. Ghasemi, A. Saidi, Ceram. Int. 40, 4945–4952 (2014)CrossRefGoogle Scholar
  40. 40.
    W. Chen, W.W. Wu, C. Zhou, S.F. Zhou, M.Y. Li, Y. Ning, J. Electron. Mater. 47, 2110–2119 (2018)CrossRefGoogle Scholar
  41. 41.
    M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, Y.M. Al Angari, J. Alloys Compd. 747, 83–90 (2018)CrossRefGoogle Scholar
  42. 42.
    A.A. Sattar, H.M. EL-Sayed, I. ALsuqia, J. Magn. Magn. Mater. 395, 89–96 (2015)CrossRefGoogle Scholar
  43. 43.
    V. Harikrishnan, R. Ezhil Vizhi, J. Magn. Magn. Mater. 418, 217–223 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Hazra, B.K. Ghosh, M.K. Patra, R.K. Jani, S.R. Vadera, N.N. Ghosh, Powder Technol. 279, 10–17 (2015)CrossRefGoogle Scholar
  45. 45.
    Z. Shan, J. Liu, V.M. Chakka, H. Zeng, J. Jiang, IEEE Trans. Magn. 38, 2907–2909 (2002)CrossRefGoogle Scholar
  46. 46.
    R. Safi, A. Ghasemi, R. Shoja-Razavi, Ceram. Int. 43, 617–624 (2017)CrossRefGoogle Scholar
  47. 47.
    M.A. Almessiere, Y. Slimani, A. Baykal, J. Alloys Compd. 762, 389–397 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured MaterialsGuangxi UniversityNanningPeople’s Republic of China
  3. 3.Guangxi Zhuang Autonomous Region Center for Analysis and Test ResearchNanningPeople’s Republic of China

Personalised recommendations