Mixed-state magnetotransport properties of MgB2 thin film prepared by pulsed laser deposition on an Al2O3 substrate

  • N. S. AlzayedEmail author
  • M. Shahabuddin
  • Shahid M. Ramey
  • S. Soltan


A MgB2 film was deposited on an Al2O3 substrate (1102) using pulsed laser deposition (PLD) and in situ annealing at 700 °C for 30 min. The thickness of the film was 600 nm. The film was investigated using a PPMS system from Quantum Design. The film presented a critical temperature of 36 K, and XRD analysis showed that the film is preferentially c-oriented. Transport properties that were measured or estimated included the following: upper critical field, HC2, irreversibility field, Hirr, activation energy, Uo, magnetoresistance, MR and IV characteristics. We completed investigations under different magnetic fields (0–7 T) applied perpendicular to the film at different temperatures. The results showed the remarkable dependence of both TC and ΔTC on the field. ΔTC increased continually from 1.6 K at no field up to 3.8 K for 7 T. The strong dependence of Uo on the magnetic field was observed, but Uo decreased faster for high fields from 451 meV at 0 T down to 210 meV at 7 T. The sharp decrease of Uo indicated that the weakening of the effective pinning forces is more rapid at higher fields. HC2 and Hirr were estimated using the Arrhenius law, and the HC2(0) value was 21 T. The current–voltage (IV) characteristics measurements at different conditions showed hysteresis in the critical current, IC, which was temperature- and magnetic field-dependent. Although the critical current degraded linearly with increasing magnetic field, the hysteresis width, ΔI, tended to decrease in value more quickly at higher temperatures. Hysteresis has been attributed to weaker intergrain coupling and larger effective fields at the grain boundaries in the film.



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Magnesium Diboride Devices and Applications, Ph.D. Dissertation by Thomas Melbourne (2018)Google Scholar
  2. 2.
    B. Sahoo, W. Keune, V. Kuncser, R. R¨ohlsberger, Supercond. Sci. Technol. 25, 015004 (2012)CrossRefGoogle Scholar
  3. 3.
    Connectivity, Doping and Anisotropy in Highly Dense Magnesium Diboride (MgB2), Ph.D. Dissertation by Guangze Li (2015)Google Scholar
  4. 4.
    X. Zhengshan Guo, X. Cai, Y. Liao, C. Chen, R. Yang, W. Niu, Z. Luo, Q. Huang, Z. Feng, Gan, Supercond. Sci. and Technol. 31(6), Article ID 065005 (2018)Google Scholar
  5. 5.
    X. Kong, Q. Dai, L. Han, Q. Feng, Z. Gao, Y. Ma, M. Chu, H. Xue, J. Li, F. Wang, Y. Zhang, Supercond. Sci. Technol. 24, 105013 (2011)CrossRefGoogle Scholar
  6. 6.
    Y.J. Lim, S.C. Park, J.K. Chung, T.K. Lee, K.J. Song, C.J. Kim, Physica C 470(20), 1442–1445 (2010)CrossRefGoogle Scholar
  7. 7.
    A.E. Ozmetin, O. Sahin, E. Ongun, M. Kuru, J. Alloys Compd. 619(15), 262–266 (2015)CrossRefGoogle Scholar
  8. 8.
    M.E. Yakinci, Z.D. Yakinci, M. Ali, Aksan, Y. Balci, Cryogenics 52, 749–754 (2012)CrossRefGoogle Scholar
  9. 9.
    Y.J. Huh, W.K. Seong, S.-G. Jung, W.N. Kang, Supercond. Sci. Technol. 20, 1169 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Zhang, Xu Wang, J. Ma, R. Cui, C. Deng, J. Alloys Compd. 649, 1226–1230 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Lolli, T. Li, C. Portesi, E. Taralli, N. Acharya, K. Chen, M. Rajteri, D. Cox, E. Monticone, J. Gallop, Supercond. Sci. Technol. 29, 104008 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Altin, M.A. Aksan, Z.D. Yakinci, M. Özabaci, Y. Balci, M.E. Yakinci, J. Phys. 153(1), Article ID 012001 (2009)Google Scholar
  13. 13.
    A. Brinkman, D. Veldhuis, D. Mijatovic, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, H. Rogalla, Appl. Phys. Lett. 79, 2420–2422 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Zhuang, T. Tan, Y. Wang, S. Bai, X. Ma, H. Yang, G. Zhang, Y. He, H. Wen, X.X. Xi, Q. Feng, Z. Gan, Supercond. Sci. Technol. 22, 025002 (2009)CrossRefGoogle Scholar
  15. 15.
    S.F. Wang, S.Y. Dai, Y.L. Zhou, Z.H. Chen, D.F. Cui, J.D. Xu, M. He, H.B. Lu, G.Z. Yang, G.S. Fu, L. Han, Supercond. Sci. Technol. 14, 885–887 (2001)CrossRefGoogle Scholar
  16. 16.
    C.B. Eom et al., Nature 411, 558–560 (2001)CrossRefGoogle Scholar
  17. 17.
    A. Sidorenko, V. Zdravkov, V. Ryazanov, S. Horn, S. Klimm, R. Tidecks, A. Wixforth, T. Schimmel, T. Koch, Philis. Mag. 85(16), 1783–1790 (2005)CrossRefGoogle Scholar
  18. 18.
    T.T.M. Palstra, B. Batlogg, R.B.V. Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621–6632 (1990)CrossRefGoogle Scholar
  19. 19.
    S.D. Kaushik, V. Braccini, S. Patnaik, Pramana 71(6), 1335–1343 (2008)CrossRefGoogle Scholar
  20. 20.
    V. Braccini et al., Phys. Rev. B 71, 012504 (2005)CrossRefGoogle Scholar
  21. 21.
    W. By, Martienssen, H. Warlimont (eds.), Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005), p. 746Google Scholar
  22. 22.
    L.F. Goodrich, T.C. Stauffer, J. Res. Natl. Inst. Stand. Technol. 106, 657–690 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics & Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Max-Planck-Institute for Intelligent SystemsStuttgartGermany
  3. 3.Department of Physics, Faculty of ScienceHelwan UniversityCairoEgypt

Personalised recommendations