Advertisement

Shape-dependent activity of anisotropic Ag nanostructures supported on TiO2 for the photoelectrocatalytic water oxidation

  • Abuzar Khan
  • Muhammad I Ahmed
  • Md. Abdul Aziz
  • Mohammad Asif
  • Hatim Dafalla
  • Mohammad QamarEmail author
Article
  • 106 Downloads

Abstract

Herein, we report shape-dependent photoelectrocatalytic activity of Ag/Ag2O nanostructures supported on pristine or nitrogen-doped TiO2 (NTiO2). Isotropic (spherical) and anisotropic (cubic and triangular) nanocrystals of Ag/Ag2O nanocrystals were fabricated using complexing and surface directing agents. Microscopic images confirmed the formation of nanospheres (∼ 50–60 nm), nanocubes (∼ 50–70 nm), triangular nanoplates (∼ 40–60 nm). The X-ray photoelectron spectroscopy indicated the presence of metallic silver (Ag0) and oxidized silver (Ag+). The as-prepared photoelectrodes were illuminated by Ultraviolet–Visible (λ = 300–600 nm) or visible radiations (λ = > 420 nm), and photoelectrochemical oxidation of water was examined. The findings indicate a significant correlation in the shape of Ag/Ag2O nanostructures, the incident wavelength, and the photoelectrochemical performance. In addition, different performance trend was discerned under Ultraviolet–Visible and visible excitations with respect to the amount of deposited Ag/Ag2O. The variation in activity observed with different shapes of Ag/Ag2O was correlated to enhanced optical property, arising due to the anisotropic structure, and electrical conductivity.

Notes

Acknowledgements

This project was funded by National Plan for Science, Technology, and Innovation (MAARIFAH), King Abdul-Aziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), Kingdom of Saudi Arabia, Award Number (13-NAN1627-04).

Supplementary material

10854_2018_422_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 71 KB)

References

  1. 1.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Nat. Energy 1, 16151 (2016)CrossRefGoogle Scholar
  3. 3.
    E.L. Cates, Environ. Sci. Technol. 51, 757 (2017)CrossRefGoogle Scholar
  4. 4.
    P.V. Kamat, J. Bisquert, J. Phys. Chem. C 117, 14873 (2013)CrossRefGoogle Scholar
  5. 5.
    Y.-X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y.-L. Men, F.-F. Cao, S.-H. Yu, J.B. Goodenough, J. Am. Chem. Soc. 139, 4123 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Qamar, M. Abdalwadoud, M.I. Ahmed, B. Merzougui, S. Bukola, Z.H. Yamani, M.N. Siddiqui, ACS Appl. Mater. Interfaces 7, 17954 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Qamar, R.B. Elsayed, K.R. Alhooshani, M.I. Ahmed, D.W. Bahnemann, ACS Appl. Mater. Interfaces 7, 1257 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Zhou, Z. Wu, Z. Liu, Rare Met. 27, 457 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, Z. Jiang, J. Phys. Chem. C 119, 5827 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Shao, J. Han, G. Liu, Z. Wang, Y. Zhao, X. Zong, C. Li, ChemPhotoChem 2, 256 (2018)CrossRefGoogle Scholar
  12. 12.
    H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5, 782 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Pan, W.I. Lee, Chem. Mater. 18, 847 (2006)CrossRefGoogle Scholar
  14. 14.
    Q. Wang, J. Huang, H. Sun, Y.H. Ng, K. Zhang, Y. Lai, ChemSusChem 11, 1708 (2018)CrossRefGoogle Scholar
  15. 15.
    J.S. Lee, K.H. You, C.B. Park, Adv. Mater. 24, 1084 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Di Valentin, G. Pacchioni, Catal. Today 206, 12 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Khan, M.I. Ahmed, A. Adam, A. Azad, M. Qamar, Nanotechnology 28, 055602 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Zhang, J. Li, M. Zeng, J. Li, J. Xu, X. Wang, Chem. Eur. J. 20, 9805 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Lian, W. Wang, G. Li, F. Tian, K.S. Schanze, H. Li, ACS Appl. Mater. Interfaces 9, 16959 (2017)CrossRefGoogle Scholar
  20. 20.
    L.R. Grabstanowicz, S. Gao, T. Li, R.M. Rickard, T. Rajh, D.-J. Liu, T. Xu, Inorg. Chem. 52, 3884 (2013)CrossRefGoogle Scholar
  21. 21.
    X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331, 746 (2011)CrossRefGoogle Scholar
  22. 22.
    H. Li, H. Yu, L. Sun, J. Zhai, X. Han, Nanoscale 7, 1610 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Murdoch, G. Waterhouse, M. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, Nat. Chem. 3, 489 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Choi, H. Kim, G. Moon, S. Jo, W. Choi, ACS Catal. 6, 821 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Chem. Rev. 111, 3669 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Bae, N.H. Kim, M. Kim, K.Y. Lee, S.W. Han, J. Am. Chem. Soc. 130, 5432 (2008)CrossRefGoogle Scholar
  28. 28.
    P.R. Sajanlal, T.S. Sreeprasad, A.K. Samal, T. Pradeep, Nano Rev. 2, 5883 (2011)CrossRefGoogle Scholar
  29. 29.
    C.M. Cobley, S.E. Skrabalak, D.J. Campbell, Y. Xia, Plasmonics 4, 171 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Xu, D. Wang, J. Zhang, Y. Li, Chem. Asian J. 1, 888 (2006)CrossRefGoogle Scholar
  31. 31.
    M.H. Rashid, T.K. Mandal, J. Phys. Chem. C 111, 16750 (2007)CrossRefGoogle Scholar
  32. 32.
    X. Li, W.C.H. Choy, H. Lu, W.E. Sha, A.H.P. Ho, Adv. Funct. Mater. 23, 2728 (2013)CrossRefGoogle Scholar
  33. 33.
    K. Naoi, Y. Ohko, T. Tatsuma, J. Am. Chem. Soc. 126, 3664 (2004)CrossRefGoogle Scholar
  34. 34.
    H. Zhang, G. Chen, Environ. Sci. Technol. 43, 2905 (2009)CrossRefGoogle Scholar
  35. 35.
    D. Guin, S.V. Manorama, J.N.L. Latha, S. Singh, J. Phys. Chem. C 111, 13393 (2007)CrossRefGoogle Scholar
  36. 36.
    I.O. Sosa, C. Noguez, R.G. Barrera, J. Phys. Chem. B 107, 6269 (2003)CrossRefGoogle Scholar
  37. 37.
    D.B. Ingram, P. Christopher, J.L. Bauer, S. Linic, ACS Catal. 1, 1441 (2011)CrossRefGoogle Scholar
  38. 38.
    D.B. Ingram, S. Linic, J. Am. Chem. Soc. 133, 5202 (2011)CrossRefGoogle Scholar
  39. 39.
    V. Bansal, V. Li, A.P. O’Mullane, S.K. Bhargava, CrystEngComm 12, 4280 (2010)CrossRefGoogle Scholar
  40. 40.
    S. Zhou, J. Li, K.D. Gilroy, J. Tao, C. Zhu, X. Yang, X. Sun, Y. Xia, ACS Nano 10, 9861 (2016)CrossRefGoogle Scholar
  41. 41.
    X. Yang, Y. Yu, Z. Gao, ACS Nano 8, 4902 (2014)CrossRefGoogle Scholar
  42. 42.
    K. Dai, L. Lu, Q. Liu, G. Zhu, Q. Liu, Z. Liu, Dalton Trans. 43, 2202 (2014)CrossRefGoogle Scholar
  43. 43.
    R. Rahal, T. Pigot, D. Foix, S. Lacombe, Appl. Catal. B 104, 361 (2011)CrossRefGoogle Scholar
  44. 44.
    X. Hu, Q. Zhu, X. Wang, N. Kawazoe, Y. Yang, J. Mater. Chem. A 3, 17858 (2015)CrossRefGoogle Scholar
  45. 45.
    C. Bittencourt, M. Rutar, P. Umek, A. Mrzel, K. Vozel, D. Arčon, K. Henzler, P. Krüger, P. Guttmann, RSC Adv. 5, 23350 (2015)CrossRefGoogle Scholar
  46. 46.
    B.J. Wiley, S.H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B 110, 15666 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abuzar Khan
    • 1
  • Muhammad I Ahmed
    • 1
  • Md. Abdul Aziz
    • 1
  • Mohammad Asif
    • 2
  • Hatim Dafalla
    • 3
  • Mohammad Qamar
    • 1
    Email author
  1. 1.Center of Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Center of Environment and Water (CEW)King Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  3. 3.Center for Engineering Research (CER)King Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia

Personalised recommendations