Porous nitrogen and oxygen co-doped carbon microtubes derived from plane tree fruit fluff for high-performance supercapacitors

  • Da He
  • Zheng-Hong Huang
  • Ming-Xi WangEmail author


Porous nitrogen and oxygen co-doped carbon microtubes (PCMTs) were prepared via carbonization followed by activation of plane tree fruit fluffs (PTFFs) and employed as high-performance supercapacitor electrode materials. The pore structures, surface chemistry and degree of graphitization of the final products can be facilely tailored by adjusting the activation temperature, which changed remarkably as the activation temperature increased from 650 to 900 °C. The PCMT-850 obtained by activating at 850 °C possessed despite the second largest specific surface area (1533 m2/g), but the highest mesopore ratio (9.13%), the maximal nitrogen content (2.20 at.%) and highest degree of graphitization as well as excellent electrical conductivity. The PCMT-850-based carbon electrode exhibited the highest charge storage capacity with a specific capacitance of 257.6 F/g at a current of 1 A/g and the lowest internal resistance in 6 M KOH. The high supercapacitor performance can be attributed to the combined effects of its pore structure, heteroatom doping effects and degree of crystallinity. The favorable capacitive performance render the waste biomass PTFFs serve as novel resources of nitrogen and oxygen co-doped carbon materials for high-performance supercapacitors.



This work was financially supported by the Fund of Key Laboratory for Advanced Material of Ministry of Education (No. 2017AML13), China, Science and Technology Project Founded by the Education Department of Hubei Province No. B2017052 and Graduate Education & Innovation Fund in Wuhan Institute of Technology (No. CX2017084), Wuhan, Hubei Province, P. R. China.


  1. 1.
    J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai, Z. Lin, Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11, 772–799 (2018)CrossRefGoogle Scholar
  2. 2.
    P. Xu, W. Zeng, S. Luo, C. Ling, J. Xiao, A. Zhou, Y. Sun, K. Liao, 3D Ni-Co selenide nanorod array grown on carbon fiber paper: towards high-performance flexible supercapacitor electrode with new energy storage mechanism. Electrochim. Acta 241, 41–49 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Sun, Z. Fang, C. Wang, K.R.R.M. Ariyawansha, A. Zhou, H. Duan, Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale. 7, 7790–7801 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Guo, M.H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z.L. Wang, Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano11, 4475–4482 (2017)CrossRefGoogle Scholar
  5. 5.
    D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)CrossRefGoogle Scholar
  6. 6.
    N. Cai, J. Fu, H. Zeng, X. Luo, C. Han, F. Yu, Reduced graphene oxide-silver nanoparticles/nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitor application. J. Alloys Compd. 742, 769–779 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Jiang, Z. Wang, Q. Deng, F. Zhang, F. You, C. Yao, Zinc-doped nickel oxide hollow microspheres—preparation hydrothermal synthesis and electrochemical properties. Eur. J. Inorg. Chem. 39, 4345–4348 (2018)CrossRefGoogle Scholar
  8. 8.
    J.G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 74, 51–124 (2015)CrossRefGoogle Scholar
  9. 9.
    J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@Polypyrrole Core–Shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces 10, 18816–18823 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Li, Y. Liu, W. Guo, J. Chen, W. He, F. Peng, Synthesis of spherical PANI particles via chemical polymerization in ionic liquid for high-performance supercapacitors. Electrochim. Acta 135, 550–557 (2014)CrossRefGoogle Scholar
  11. 11.
    J.G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653 (2017)CrossRefGoogle Scholar
  12. 12.
    Q. Wang, M. Zhou, Y. Zhang, M. Liu, W. Xiong, S. Liu, Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors. J. Mater. Sci. Mater. Electr. 29, 4294–4300 (2018)CrossRefGoogle Scholar
  13. 13.
    Z. Liu, Z. Zhou, W. Xiong, Q. Zhang, Controlled synthesis of carbon nanospheres via the modulation of the hydrophilic length of the assembled surfactant micelles. Langmuir 34, 10389–10396 (2018)CrossRefGoogle Scholar
  14. 14.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  15. 15.
    L. Hu, Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5, 6423 (2012)CrossRefGoogle Scholar
  16. 16.
    W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon. 49, 838–843 (2011)CrossRefGoogle Scholar
  17. 17.
    H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Letters 11, 2472–2477 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009)CrossRefGoogle Scholar
  19. 19.
    Q. Guan, W. Xiong, L. Zhou, S. Liu, Facile synthesis of nitrogen-doped porous carbon-gold hybrid nanocomposite for mercury(II) ion electrochemical determination. Electroanalysis 28, 133–139 (2016)CrossRefGoogle Scholar
  20. 20.
    D.H. Chenglong Li, Z.H. Huang, M.X. Wang, Hierarchical micro-/mesoporous carbon derived from rice husk by hydrothermal pre-treatment for high performance supercapacitor. J. Electrochem. Soc. 165, A3334–A3341 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5, 2411–2428 (2016)CrossRefGoogle Scholar
  22. 22.
    G.Y. Xu, J.P. Han, D. Bing, N. Ping, P. Jin, D. Hui, H.S. Li, X.G. Zhang, Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17, 1668–1674 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Deng, T. Xiong, H. Wang, A. Zheng, Y. Wang, Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain. Chem. Eng. 4, 3750–3756 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Xie, G. Sun, F. Su, X. Guo, Q.Q. Kong, X.M. Li, X. Huang, L. Wan, W. Song, K. Li, Hierarchical porous carbon microtubes derived from Willow Catkins for supercapacitor application. J. Mater. Chem. A 4, 1637–1646 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang, S. Chen, Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 7, 6136 (2015)CrossRefGoogle Scholar
  26. 26.
    O. Hamdaoui, F. Saoudi, M. Chiha, E. Naffrechoux, Sorption of malachite green by a novel sorbent, dead leaves of plane tree: equilibrium and kinetic modeling. Chem. Eng. J. 143, 73–84 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, X. Liu, S. Wang, S.X. Dou, L. Li, Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J. Mater. Chem. A 4, 10869–10877 (2016)Google Scholar
  28. 28.
    B.V. Kaludjerović, V.M. Jovanović, S.I. Stevanović, ŽD. Bogdanov, Characterization of nanoporous carbon fibrous materials obtained by chemical activation of plane tree seed under ultrasonic irradiation. Ultrason. Sonochem. 21, 782 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Tan, X. Wang, D. Jia, P. Hao, Y. Sang, H. Liu, Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors. J. Mater. Chem. A 5, 2580–2591 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Zhao, Q. Zhang, C.M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlögl, D.S. Su, Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1, 624–630 (2012)CrossRefGoogle Scholar
  31. 31.
    F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Rouquerol, P. Llewellyn, F. Rouquerol, Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 160, 49–56 (2007)CrossRefGoogle Scholar
  33. 33.
    A.K. Ladavos, A.P. Katsoulidis, A. Iosifidis, K.S. Triantafyllidis, T.J. Pinnavaia, P.J. Pomonis, The BET equation, the inflection points of N 2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous Mesoporous Mater. 151, 126–133 (2012)CrossRefGoogle Scholar
  34. 34.
    ISO 9277, Determination of the specific surface area of solids by gas adsorption—BET method, 2nd ed. 2012 of ISO 9277. ISO. (2010)Google Scholar
  35. 35.
    A.V. Neimark, Y. Lin, P.I. Ravikovitch, M. Thommes, Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)CrossRefGoogle Scholar
  36. 36.
    A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application. Electrochim. Acta 50, 2799–2805 (2005)CrossRefGoogle Scholar
  37. 37.
    M. East, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87, 1051–1069 (2015)Google Scholar
  38. 38.
    J. Yin, D. Zhang, J. Zhao, X. Wang, H. Zhu, C. Wang, Meso- and micro-porous composite carbons derived from humic acid for supercapacitors. Electrochim. Acta 136, 504–512 (2014)CrossRefGoogle Scholar
  39. 39.
    W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7, 379–386 (2013)CrossRefGoogle Scholar
  40. 40.
    L.G. Cancado, K. Takai, T. Enoki, M. Endo, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106–163106 (2006)CrossRefGoogle Scholar
  41. 41.
    J.M. Vallerot, X. Bourrat, A. Mouchon, G. Chollon, Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon 44, 1833–1844 (2006)CrossRefGoogle Scholar
  42. 42.
    W.S. Bacsa, J.S. Lannin, D.L. Pappas, J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon. Phys. Rev. B 47, 10931–10934 (1993)CrossRefGoogle Scholar
  43. 43.
    H. Ishida, H. Fukuda, G. Katagiri, A. Ishitani, An Application of surface-enhanced raman scattering to the surface characterization of carbon materials. Appl. Spectrosc. 40, 322–329 (1986)CrossRefGoogle Scholar
  44. 44.
    T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565 (1995)CrossRefGoogle Scholar
  45. 45.
    W. Kai, Z. Ning, S. Lei, Y. Rui, X. Tian, J. Wang, S. Yan, D. Xu, Q. Guo, L. Lang, Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 166, 1–11 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Peng, G. Ma, K. Sun, J. Mu, X. Zhou, Z. Lei, A novel fabrication of nitrogen-containing carbon nanospheres with high rate capability as electrode materials for supercapacitors. RSC Adv. 5, 12034–12042 (2015)CrossRefGoogle Scholar
  47. 47.
    Y. Zhang, Y. Wang, Y. Meng, G. Tan, Y. Guo, D. Xiao, Porous nitrogen-doped carbon tubes derived from reed catkins as a high-performance anode for lithium ion batteries. RSC Adv. 6, 98434–98439 (2016)CrossRefGoogle Scholar
  48. 48.
    U. Zielke, K. Hüttinger, W. Hoffman, Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 34, 983–998 (1996)CrossRefGoogle Scholar
  49. 49.
    L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899–3904 (2013)CrossRefGoogle Scholar
  50. 50.
    L. Xie, G. Sun, F. Su, X. Guo, Q. Kong, X. Li, X. Huang, L. Wan, K. Li, C. Lv, Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4, 1637–1646 (2016)CrossRefGoogle Scholar
  51. 51.
    B. Xu, S. Hou, G. Cao, F. Wu, Y. Yang, Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J. Mater. Chem. 22, 19088 (2012)CrossRefGoogle Scholar
  52. 52.
    C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, F. Beguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv. Funct. Mater. 17, 1828–1836 (2007)CrossRefGoogle Scholar
  53. 53.
    P. Chen, J.J. Yang, S.S. Li, Z. Wang, T.Y. Xiao, Y.H. Qian, S.H. Yu, Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy. 2, 249–256 (2013)CrossRefGoogle Scholar
  54. 54.
    M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46, 1475–1488 (2008)CrossRefGoogle Scholar
  55. 55.
    M. Liu, L. Gan, W. Xiong, F. Zhao, X. Fan, D. Zhu, Z. Xu, Z. Hao, L. Chen, Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors. Energy Fuels 27, 1168–1173 (2013)CrossRefGoogle Scholar
  56. 56.
    J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)CrossRefGoogle Scholar
  57. 57.
    J.G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14, e1703950 (2018)CrossRefGoogle Scholar
  58. 58.
    W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, J. Huang, J. Yang, D. Zhao, Z. Jiang, Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem. Commun. 9, 569–573 (2007)CrossRefGoogle Scholar
  59. 59.
    M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249 (2013)CrossRefGoogle Scholar
  60. 60.
    J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, L. Jiang, Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci. Rep. 4, 5545 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical and Environmental EngineeringWuhan Institute of TechnologyWuhanChina
  2. 2.Lab of Advanced Materials, School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations