Novel poly(3,4-ethylenedioxythiophene)/reduced graphene oxide incorporated with manganese oxide/iron oxide for supercapacitor device
- 49 Downloads
Abstract
A new composite namely PEDOT/RGO/MnO2/Fe2O3 was successfully developed from mixed metal oxides (MnO2 and Fe2O3) incorporated with poly(3,4-ethylenedioxythiophene) (PEDOT) and reduced graphene oxide (RGO). The surface morphology of the prepared composite revealed that MnO2 and Fe2O3 particles were successfully coated on the wrinkles and curly like-sheets of PEDOT/RGO in order to prevent aggregation of RGO layers and the composite was able to retain 80% of its initial specific capacitance in 1 M KCl. The PEDOT/RGO/MnO2/Fe2O3 composite with Mn:Fe molar ratio of 2:3 displayed the highest specific capacitance of 287 F/g indicating that Mn:Fe molar ratio gives significant effect on the supercapacitive performance of the composite. The specific capacitance of PEDOT/RGO/MnO2/Fe2O3 was higher than the composites with monometallic oxide i.e. PEDOT/RGO/MnO2 and PEDOT/RGO/Fe2O3. The PEDOT/RGO/MnO2/Fe2O3 composite also revealed the lowest charge transfer resistance that leads to the superior supercapacitive performance. The specific energy and specific power of PEDOT/RGO/MnO2/Fe2O3 composite were 11 Wh/kg and 1900 W/kg at 4 A/g, respectively. The results showed that the PEDOT/RGO/MnO2/Fe2O3 composite is a promising electrode material for high-performance supercapacitor.
Notes
Acknowledgements
This research was financially supported by the Ministry of Education, Malaysia through the Fundamental Research Grant Scheme (01-02-13-1388FR).
References
- 1.D.P. Dubal, W.B. Kim, C.D. Lokhande, J. Phys. Chem. Solids. 73, 18–24 (2012)CrossRefGoogle Scholar
- 2.K.V. Sankar, R.K. Selvan, Electrochimica Acta. 213, 469–481 (2016)CrossRefGoogle Scholar
- 3.M.T. Tung, H.T.B. Thuy, L.T.T. Hang, J. Nanosci. Nanotechnol. 15, 6949–6956 (2015)CrossRefGoogle Scholar
- 4.T. Prasankumar, V.S. Irthaza Aazem, P. Raghavan et al., J. Alloys Compd. 695, 2835–2843 (2017)CrossRefGoogle Scholar
- 5.L. Tong, K.H. Skorenko, A.C. Faucett et al., J. Power Sources. 297, 195–201 (2015)CrossRefGoogle Scholar
- 6.H. Choi, H. Yoon, Nanomaterials. 5, 906–936 (2015)CrossRefGoogle Scholar
- 7.W. Zhou, X. Ma, F. Jiang et al., Electrochimica Acta. 138, 270–277 (2014)CrossRefGoogle Scholar
- 8.Q. Zhou, D. Zhu, X. Ma, J. Xu, W. Zhou, F. Zhao, RSC Adv. 6, 29840–29847 (2016)CrossRefGoogle Scholar
- 9.N.H.N. Azman,, L.H. Ngee, Y. Sulaiman, M. S. Mamat @ Mat Nazir. Int. J. Energy Res. 42, 2104–2116 (2018)CrossRefGoogle Scholar
- 10.Z. Zhao, G.F. Richardson, Q. Meng, S. Zhu, H.-C. Kuan, J. Ma, Nanotechnology. 27, 042001 (2015)CrossRefGoogle Scholar
- 11.K.V. Sankar, R.K. Selvan, J. Power Sources. 275, 399–407 (2015)CrossRefGoogle Scholar
- 12.G. Zhu, J. Yang, Y. Liu et al., Prog. Nat. Sci. Mater. Int. 26, 264–270 (2016)CrossRefGoogle Scholar
- 13.N.H.N. Azman, H.N. Lim, Y. Sulaiman, Electrochimica Acta. 188, 785–792 (2016)CrossRefGoogle Scholar
- 14.N.H.N. Azman, H.N. Lim, Y. Sulaiman, J. Nanomater. 2016, 1–10 (2016)CrossRefGoogle Scholar
- 15.H. Zhou, H.-J. Zhai, G. Han, J. Power Sources. 323, 125–133 (2016)CrossRefGoogle Scholar
- 16.N.A. Zubair, N.A. Rahman, H.N. Lim, R.M. Zawawi, Y. Sulaiman, RSC Adv. 6, 17720–17727 (2016)CrossRefGoogle Scholar
- 17.D. Yu, J. Yao, L. Qiu et al., J. Mater. Chem. A. 2, 8465–8471 (2014)CrossRefGoogle Scholar
- 18.P. Tang, L. Han, L. Zhang, ACS Appl. Mater. Interfaces. 6, 10506–10515 (2014)CrossRefGoogle Scholar
- 19.C. Wei, H. Pang, B. Zhang, Q. Lu, S. Liang, F. Gao, Sci. Rep. 3, 2193 (2013)CrossRefGoogle Scholar
- 20.Z. Ye, B. Wang, G. Liu et al., J. Electrochem. Soc. 163, A2725–A2732 (2016)CrossRefGoogle Scholar
- 21.G. Nie, X. Lu, M. Chi et al., Electrochimica Acta. 231, 36–43 (2017)CrossRefGoogle Scholar
- 22.J. Chen, Y. Wang, J. Cao et al., Electrochimica Acta. 182, 861–870 (2015)CrossRefGoogle Scholar
- 23.J.P. Zheng, J. Huang, T.R. Jow, J. Electrochem. Soc. 144, 2026–2031 (1997)CrossRefGoogle Scholar
- 24.Y.M. Vol’fkovich, T.M. Serdyuk, Russ. J. Electrochem. 38, 935–959 (2002)CrossRefGoogle Scholar
- 25.W. Hui, X. Chen, X. Jing et al., Nanotechnology. 24, 1–7 (2013)Google Scholar
- 26.J. Shabani Shayeh, A. Ehsani, M.R. Ganjali, P. Norouzi, B. Jaleh, Appl. Surf. Sci. 353, 594–599 (2015)CrossRefGoogle Scholar
- 27.M. Hao, Y. Chen, W. Xiong et al., Electrochimica Acta. 191, 165–172 (2016)CrossRefGoogle Scholar
- 28.T. Lindfors, Z.A. Boeva, R.-M. Latonen, RSC Adv. 4, 25279–25286 (2014)CrossRefGoogle Scholar
- 29.Q. Wu, M. Chen, S. Wang, X. Zhang, L. Huan, G. Diao, Chem. Eng. J. 304, 29–38 (2016)CrossRefGoogle Scholar
- 30.T. Zhu, S. Zheng, Y. Lu, Y. Chen, Y. Chen, H. Guo, J. Solid State Electrochem. 19, 381–390 (2014)CrossRefGoogle Scholar
- 31.G. Han, Y. Liu, E. Kan et al., RSC Adv. 4, 9898–9904 (2014)CrossRefGoogle Scholar
- 32.F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy. 16, 488–515 (2015)CrossRefGoogle Scholar
- 33.M. Li, H. He, Vacuum. 143, 371–379 (2017)CrossRefGoogle Scholar