Novel poly(3,4-ethylenedioxythiophene)/reduced graphene oxide incorporated with manganese oxide/iron oxide for supercapacitor device

  • Nur Hawa Nabilah Azman
  • Yusran SulaimanEmail author
  • Md Shuhazlly Mamat @ Mat Nazir
  • Hong Ngee Lim


A new composite namely PEDOT/RGO/MnO2/Fe2O3 was successfully developed from mixed metal oxides (MnO2 and Fe2O3) incorporated with poly(3,4-ethylenedioxythiophene) (PEDOT) and reduced graphene oxide (RGO). The surface morphology of the prepared composite revealed that MnO2 and Fe2O3 particles were successfully coated on the wrinkles and curly like-sheets of PEDOT/RGO in order to prevent aggregation of RGO layers and the composite was able to retain 80% of its initial specific capacitance in 1 M KCl. The PEDOT/RGO/MnO2/Fe2O3 composite with Mn:Fe molar ratio of 2:3 displayed the highest specific capacitance of 287 F/g indicating that Mn:Fe molar ratio gives significant effect on the supercapacitive performance of the composite. The specific capacitance of PEDOT/RGO/MnO2/Fe2O3 was higher than the composites with monometallic oxide i.e. PEDOT/RGO/MnO2 and PEDOT/RGO/Fe2O3. The PEDOT/RGO/MnO2/Fe2O3 composite also revealed the lowest charge transfer resistance that leads to the superior supercapacitive performance. The specific energy and specific power of PEDOT/RGO/MnO2/Fe2O3 composite were 11 Wh/kg and 1900 W/kg at 4 A/g, respectively. The results showed that the PEDOT/RGO/MnO2/Fe2O3 composite is a promising electrode material for high-performance supercapacitor.



This research was financially supported by the Ministry of Education, Malaysia through the Fundamental Research Grant Scheme (01-02-13-1388FR).


  1. 1.
    D.P. Dubal, W.B. Kim, C.D. Lokhande, J. Phys. Chem. Solids. 73, 18–24 (2012)CrossRefGoogle Scholar
  2. 2.
    K.V. Sankar, R.K. Selvan, Electrochimica Acta. 213, 469–481 (2016)CrossRefGoogle Scholar
  3. 3.
    M.T. Tung, H.T.B. Thuy, L.T.T. Hang, J. Nanosci. Nanotechnol. 15, 6949–6956 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Prasankumar, V.S. Irthaza Aazem, P. Raghavan et al., J. Alloys Compd. 695, 2835–2843 (2017)CrossRefGoogle Scholar
  5. 5.
    L. Tong, K.H. Skorenko, A.C. Faucett et al., J. Power Sources. 297, 195–201 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Choi, H. Yoon, Nanomaterials. 5, 906–936 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Zhou, X. Ma, F. Jiang et al., Electrochimica Acta. 138, 270–277 (2014)CrossRefGoogle Scholar
  8. 8.
    Q. Zhou, D. Zhu, X. Ma, J. Xu, W. Zhou, F. Zhao, RSC Adv. 6, 29840–29847 (2016)CrossRefGoogle Scholar
  9. 9.
    N.H.N. Azman,, L.H. Ngee, Y. Sulaiman, M. S. Mamat @ Mat Nazir. Int. J. Energy Res. 42, 2104–2116 (2018)CrossRefGoogle Scholar
  10. 10.
    Z. Zhao, G.F. Richardson, Q. Meng, S. Zhu, H.-C. Kuan, J. Ma, Nanotechnology. 27, 042001 (2015)CrossRefGoogle Scholar
  11. 11.
    K.V. Sankar, R.K. Selvan, J. Power Sources. 275, 399–407 (2015)CrossRefGoogle Scholar
  12. 12.
    G. Zhu, J. Yang, Y. Liu et al., Prog. Nat. Sci. Mater. Int. 26, 264–270 (2016)CrossRefGoogle Scholar
  13. 13.
    N.H.N. Azman, H.N. Lim, Y. Sulaiman, Electrochimica Acta. 188, 785–792 (2016)CrossRefGoogle Scholar
  14. 14.
    N.H.N. Azman, H.N. Lim, Y. Sulaiman, J. Nanomater. 2016, 1–10 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Zhou, H.-J. Zhai, G. Han, J. Power Sources. 323, 125–133 (2016)CrossRefGoogle Scholar
  16. 16.
    N.A. Zubair, N.A. Rahman, H.N. Lim, R.M. Zawawi, Y. Sulaiman, RSC Adv. 6, 17720–17727 (2016)CrossRefGoogle Scholar
  17. 17.
    D. Yu, J. Yao, L. Qiu et al., J. Mater. Chem. A. 2, 8465–8471 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Tang, L. Han, L. Zhang, ACS Appl. Mater. Interfaces. 6, 10506–10515 (2014)CrossRefGoogle Scholar
  19. 19.
    C. Wei, H. Pang, B. Zhang, Q. Lu, S. Liang, F. Gao, Sci. Rep. 3, 2193 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Ye, B. Wang, G. Liu et al., J. Electrochem. Soc. 163, A2725–A2732 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Nie, X. Lu, M. Chi et al., Electrochimica Acta. 231, 36–43 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Chen, Y. Wang, J. Cao et al., Electrochimica Acta. 182, 861–870 (2015)CrossRefGoogle Scholar
  23. 23.
    J.P. Zheng, J. Huang, T.R. Jow, J. Electrochem. Soc. 144, 2026–2031 (1997)CrossRefGoogle Scholar
  24. 24.
    Y.M. Vol’fkovich, T.M. Serdyuk, Russ. J. Electrochem. 38, 935–959 (2002)CrossRefGoogle Scholar
  25. 25.
    W. Hui, X. Chen, X. Jing et al., Nanotechnology. 24, 1–7 (2013)Google Scholar
  26. 26.
    J. Shabani Shayeh, A. Ehsani, M.R. Ganjali, P. Norouzi, B. Jaleh, Appl. Surf. Sci. 353, 594–599 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Hao, Y. Chen, W. Xiong et al., Electrochimica Acta. 191, 165–172 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Lindfors, Z.A. Boeva, R.-M. Latonen, RSC Adv. 4, 25279–25286 (2014)CrossRefGoogle Scholar
  29. 29.
    Q. Wu, M. Chen, S. Wang, X. Zhang, L. Huan, G. Diao, Chem. Eng. J. 304, 29–38 (2016)CrossRefGoogle Scholar
  30. 30.
    T. Zhu, S. Zheng, Y. Lu, Y. Chen, Y. Chen, H. Guo, J. Solid State Electrochem. 19, 381–390 (2014)CrossRefGoogle Scholar
  31. 31.
    G. Han, Y. Liu, E. Kan et al., RSC Adv. 4, 9898–9904 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy. 16, 488–515 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Li, H. He, Vacuum. 143, 371–379 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Functional Device Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Material Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations