Thiophene containing conjugated microporous polymers derived sulfur-enriched porous carbon supported Fe3O4 nanoparticles with superior lithium storage properties

  • Qingtang ZhangEmail author
  • Yan Meng
  • Meng Li
  • Xiaomei Wang


Thiophene containing conjugated microporous polymers (SCMP) derived sulfur-enriched porous carbon supported Fe3O4 nanoparticles were successfully synthesized from the mixture of SCMP and ferric salt. XRD results prove that sulfur-enriched porous carbon supported Fe3O4 nanoparticles (Fe3O4-SPC) contain crystalline Fe3O4 with a face-centered-cubic structure. SEM images reveal that Fe3O4-SPC are hierarchical agglomerates constituted by nanoparticles with a range of 20–50 nm. TEM and TEM–EDX results further prove that Fe3O4 nanoparticles are embedded in the SPC nanoparticles, which can buffer the huge volume changes of Fe3O4 nanoparticles during the charge/discharge process. Nitrogen adsorption/desorption analysis reveals that Fe3O4-SPC are mesoporous materials with a surface area of 60.3 m2 g−1. These special structures enable Fe3O4-SPC show wonderful cycling performance (897.2 mAh g−1 after 300 cycles at 0.6 A g−1), being much better than those of bare Fe3O4. In addition, Fe3O4-SPC deliver a reversible capacity of 984.2 mAh g−1 at 100 mA g−1.



This research was supported by the National Nature Science Foundation of China (No. 21466020).

Supplementary material

10854_2018_412_MOESM1_ESM.docx (660 kb)
Supplementary material 1 (DOCX 659 KB)


  1. 1.
    J.M. Tarascon, M. Armand, Nature 414, 359 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Armand, J.M. Tarascon, Nature 451, 652 (2008)CrossRefGoogle Scholar
  3. 3.
    J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135, 1167 (2013)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, Q. Dai, M. Li, X. Wang, A. Li, J. Mater. Chem. A 4, 19132 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, H. Chu, L. Zhao, L. Yuan, J. Mater.Sci. 28, 6657 (2017)Google Scholar
  6. 6.
    Y. Yan, Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Chem. Commun. 48, 10663 (2012)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, M. Zhang, Y. Wang, Z. Zhang, G. Kan, C. Wang, Z. Zhong, F. Su, J. Mater. Chem. A 2, 10161 (2014)CrossRefGoogle Scholar
  8. 8.
    P. Adelhelm, Y.S. Hu, L. Chuenchom, M. Antonietti, B.M. Smarsly, J. Maier, Adv. Mater. 19, 4012 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier, K. Mullen, Adv. Mater. 22, 838 (2010)CrossRefGoogle Scholar
  10. 10.
    Y.G. Guo, J.S. Hu, L.J. Wan, Adv. Mater. 20, 2878 (2008)CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, Q. Dai, C. Yan, C. Su, A. Li, J. Alloy. Compd. 714, 204 (2017)CrossRefGoogle Scholar
  12. 12.
    G. Ning, X. Ma, X. Zhu, Y. Cao, Y. Sun, C. Qi, Z. Fan, Y. Li, X. Zhang, X. Lan, J. Gao, ACS Appl. Mater. Interfaces 6, 15950 (2014)CrossRefGoogle Scholar
  13. 13.
    W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi, Nano Lett. 12, 2283 (2012)CrossRefGoogle Scholar
  14. 14.
    A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, ACS Nano 4, 6337 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Du, Y. Meng, C. Duan, C. Wang, F. Zhu, Y. Zhang, J. Mater.Sci. 29, 18179 (2018)Google Scholar
  16. 16.
    T. Chen, L. Pan, T.A.J. Loh, D.H.C. Chua, Y. Yao, Q. Chen, D. Li, W. Qin, Z. Sun, Dalton Trans. 43, 14931 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Zhang, W. Huang, P. Hu, C. Huang, C. Shang, C. Zhang, R. Yang, G. Cui, J. Mater. Chem. A 3, 1896 (2015)CrossRefGoogle Scholar
  18. 18.
    B.C. Ma, S. Ghasimi, K. Landfester, F. Vilela, K.A.I. Zhang, J. Mater. Chem. A 3, 16064 (2015)CrossRefGoogle Scholar
  19. 19.
    Z. Xie, C. Wang, K.E. Dekrafft, W. Lin, J. Am. Chem. Soc. 133, 2056 (2011)CrossRefGoogle Scholar
  20. 20.
    L. Chen, Y. Honsho, S. Seki, D. Jiang, J. Am. Chem. Soc. 132, 6742 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Li, H.X. Sun, D.Z. Tan, W.J. Fan, S.H. Wen, X.J. Qing, G.X. Li, S.Y. Li, W.Q. Deng, Energy Environ. Sci. 4, 2062 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Laybourn, R. Dawson, R. Clowes, T. Hasell, A.I. Cooper, Y.Z. Khimyak, D.J. Adams, Polym. Chem. 5, 6325 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Li, R.F. Lu, Y. Wang, X. Wang, K.L. Han, W.Q. Deng, Angew. Chem. 122, 3402 (2010)CrossRefGoogle Scholar
  24. 24.
    C. He, S. Wu, N. Zhao, C. Shi, E.Z. Liu, J. Li, ACS Nano 7, 4459 (2013)CrossRefGoogle Scholar
  25. 25.
    H. Xia, Y. Wan, G. Yuan, Y. Fu, X. Wang, J. Power Sources 241, 486 (2013)CrossRefGoogle Scholar
  26. 26.
    T.A. Nguyen, I.T. Kim, S.W. Lee, J. Am. Ceram. Soc. 99, 2720 (2016)CrossRefGoogle Scholar
  27. 27.
    Y.Y. Hu, Z. Liu, K.W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.S. Du, K.W. Chapman, P.J. Chupas, X.Q. Yang, C.P. Grey, Nat. Mater. 12, 1130 (2013)CrossRefGoogle Scholar
  28. 28.
    L. Pan, X.D. Zhu, X.M. Xie, Y.T. Liu, Adv. Funct. Mater. 25, 3341 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qingtang Zhang
    • 1
    Email author
  • Yan Meng
    • 1
  • Meng Li
    • 1
  • Xiaomei Wang
    • 1
  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Petrochemical EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations