Fabrication of photoactive CaTiO3–TiO2 composite thin film electrodes via facile single step aerosol assisted chemical vapor deposition route

  • Muhammad Ali EhsanEmail author
  • Rabia Naeem
  • Vickie McKee
  • Abdul Rehman
  • Abbas Saeed Hakeem
  • Muhammad Mazhar


CaTiO3–TiO2 composite oxide films have been employed, for the first time, as photoelectrodes in photoelectrochemical (PEC) splitting of water. The transparent methanol solutions of Ti(iPro)4 and newly synthesized calcium complex [Ca2(TFA)3(OAc)(iPrOH)(H2O)(THF)3] (1) (where TFA stands for trifluoroacetato; OAc stands for acetate; and iPrOH stands for isopropanol) were utilized for aerosol assisted chemical vapor deposition (AACVD) of the target films. The composite electrodes were deposited on fluorine doped tin oxide (FTO) coated conducting glass substrates at varying deposition temperatures of 500–600 °C. The resulting films were extensively characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray analysis and scanning electron microscopy. PEC responses of all the composite electrodes were studied under simulated solar irradiation of AM 1.5 G (100 mW cm−2). The CaTiO3–TiO2 photoanode formed at 600 °C showed higher photocurrent density of 610 µA cm−2 at 0.7 V versus Ag/AgCl/3 M KCl reference electrode as compared to the other two electrodes fabricated similarly with only difference of fabrication temperature (i.e., 500 and 550 °C).



The authors acknowledge the High-Impact Research scheme Grant Number: UM.C/625/1/HIR/242, FRGS Grant Number: FP039-2016, IPPP Grant Number: PG053-2016A and HIR-MOHE Grant Number: UM.S/P/628/3SC21 for funding. AR acknowledges the start up Grant Number: SR151005 from KFUPM.

Supplementary material

10854_2018_411_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3144 KB)


  1. 1.
    S. Chen, S.S. Thind, A. Chen, Electrochem. Commun. 63, 10–17 (2016)CrossRefGoogle Scholar
  2. 2.
    T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 7520–7535 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148–5180 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Chen, L. Liu, F. Huang, Chem. Soc. Rev. 44, 1861–1885 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114, 9987–10043 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Kalamaras, V. Dracopoulos, L. Sygellou, P. Lianos, Chem. Eng. J. 295, 288–294 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Wang, M.O. Tadé, Z. Shao, Chem. Soc. Rev. 44, 5371–5408 (2015)CrossRefGoogle Scholar
  8. 8.
    S.S. Arbuj, R.R. Hawaldar, S. Varma, S.B. Waghmode, B.N. Wani, Sci. Adv. Mater. 4, 568–572 (2012)CrossRefGoogle Scholar
  9. 9.
    N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137–2184 (2014)CrossRefGoogle Scholar
  10. 10.
    O.A. Jaramillo-Quintero, M.S. de la Fuente, R.S. Sanchez, I.B. Recalde, E.J. Juarez-Perez, M.E. Rincón, I. Mora-Seró, Nanoscale 8, 6271–6277 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Grabowska, Appl. Catal. B 186, 97–126 (2016)CrossRefGoogle Scholar
  12. 12.
    T.W. Kim, K.-S. Choi, Science 343, 990–994 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Zhang, G. Chen, Y. Li, Y. Teng, Int. J. Hydrogen Energy 35, 2713–2716 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Mumtaz, N.M. Mohamed, M. Mazhar, M.A. Ehsan, M.S. Mohamed, Saheed, ACS Appl. Mater. Interfaces 8, 9037–9049 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Sharma, S. Upadhyay, V.R. Satsangi, R. Shrivastav, U.V. Waghmare, S. Dass, ‎J. Phys. Chem. C 118, 25320–25329 (2014)CrossRefGoogle Scholar
  16. 16.
    W. Yang, Y. Yu, M.B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, X. Wang, Nano Lett. 15, 7574–7580 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Shimura, H. Yoshida, Energy Environ. Sci. 3, 615–617 (2010)CrossRefGoogle Scholar
  18. 18.
    A.A. Tahir, H.A. Burch, K.U. Wijayantha, B.G. Pollet, Int. J. Hydrogen Energy 38, 4315–4323 (2013)CrossRefGoogle Scholar
  19. 19.
    A.A. Tahir, M. Mat-Teridi, K. Wijayantha, Phys. Status Solidi Rapid Res. Lett. 8, 976–981 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Mat-Teridi, A.A. Tahir, S. Senthilarasu, K. Wijayantha, M.Y. Sulaiman, N. Ahmad-Ludin, M.A. Ibrahim, K. Sopian, Phys. Status Solidi Rapid Res. Lett. 8, 982–986 (2014)CrossRefGoogle Scholar
  21. 21.
    M.A. Ehsan, H. Khaledi, A. Pandikumar, N.M. Huang, Z. Arifin, M. Mazhar, J. Solid State Chem. 230, 155–162 (2015)CrossRefGoogle Scholar
  22. 22.
    M.A. Mansoor, M.A. Ehsan, V. McKee, N.-M. Huang, M. Ebadi, Z. Arifin, W.J. Basirun, M. Mazhar, J. Mater. Chem. A 1, 5284–5292 (2013)CrossRefGoogle Scholar
  23. 23.
    A.A. Tahir, K.U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar, V. McKee, Chem. Mater. 21, 3763–3772 (2009)CrossRefGoogle Scholar
  24. 24.
    A.A. Tahir, T. Peiris, K. Wijayantha, Chem. Vap. Depos 18, 107–111 (2012)CrossRefGoogle Scholar
  25. 25.
    M.A. Ehsan, R. Naeem, V. McKee, A.S. Hakeem, M. Mazhar, Sol. Energy Mater Sol. Cells 161, 328–337 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Han, J. Liu, W. Yang, Q. Wu, H. Yang, X. Xue, J. Sol-Gel Sci. Technol. 81, 806–813 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Jang, P. Borse, J.S. Lee, K. Lim, O. Jung, E. Jeong, J. Bae, H. Kim, Bull. Korean Chem. Soc. 32, 95–99 (2011)CrossRefGoogle Scholar
  28. 28.
    X. Huang, Y. Xin, H. Wu, F. Ying, Y. Min, W. Li, S. Wang, Z.-j. Wu, Trans. Nonferr. Metals Soc. China 26, 464–471 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Shi, L. Guo, Prog. Nat. Sci. Mater. 22, 592–615 (2012)CrossRefGoogle Scholar
  30. 30.
    H. Zhang, G. Chen, X. He, J. Xu, J. Alloys Compd. 516, 91–95 (2012)CrossRefGoogle Scholar
  31. 31.
    T. Xian, H. Yang, Y. Huo, Phys. Scr. 89, 115801 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Struct. 1139, 430–435 (2017)CrossRefGoogle Scholar
  35. 35.
    C.B. Hübschle, G.M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 44, 1281–1284 (2011)CrossRefGoogle Scholar
  36. 36.
    G.M. Sheldrick, Acta Crystallogr. A 71, 3–8 (2015)CrossRefGoogle Scholar
  37. 37.
    G.M. Sheldrick, Acta Crystallogr. C 71, 3–8 (2015)CrossRefGoogle Scholar
  38. 38.
    X. Cai, Y. Wu, L. Wang, N. Yan, J. Liu, X. Fang, Y. Fang, Soft Matter. 9, 5807–5814 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Veith, M. Haas, V. Huch, Chem. Mater. 17, 95–101 (2005)CrossRefGoogle Scholar
  40. 40.
    F.H. Allen, Acta Crystallogr. B 58, 380–388 (2002)CrossRefGoogle Scholar
  41. 41.
    M.A. Ehsan, H. Khaledi, A. Pandikumar, P. Rameshkumar, N.M. Huang, Z. Arifin, M. Mazhar, New J. Chem. 39, 7442–7452 (2015)CrossRefGoogle Scholar
  42. 42.
    A.A. Tahir, M.A. Ehsan, M. Mazhar, K.U. Wijayantha, M. Zeller, A. Hunter, Chem. Mater. 22, 5084–5092 (2010)CrossRefGoogle Scholar
  43. 43.
    D. Wei, Y. Zhou, D. Jia, Y. Wang, J. Biomed. Mater. Res. B 84, 444–451 (2008)CrossRefGoogle Scholar
  44. 44.
    S.-W. Lee, L. Lozano-Sánchez, V. Rodríguez-González, J. Hazard. Mater. 263, 20–27 (2013)CrossRefGoogle Scholar
  45. 45.
    D. Boukhvalov, D. Korotin, A. Efremov, E. Kurmaev, C. Borchers, I. Zhidkov, D. Gunderov, R. Valiev, N. Gavrilov, S. Cholakh, Phys. Status Solidi B 252, 748–754 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Mizoguchi, K. Ueda, M. Orita, S.-C. Moon, K. Kajihara, M. Hirano, H. Hosono, Mater. Res. Bull. 37, 2401–2406 (2002)CrossRefGoogle Scholar
  47. 47.
    D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, Nat. Mater. 12, 798–801 (2013)CrossRefGoogle Scholar
  48. 48.
    F. Hu, W. Chen, Electrochem. Commun. 13, 955–958 (2011)CrossRefGoogle Scholar
  49. 49.
    M.A. Mansoor, M. Mazhar, M. Ebadi, H.N. Ming, M.A.M. Teridi, L.K. Mun, New J. Chem. 40, 5177–5184 (2016)CrossRefGoogle Scholar
  50. 50.
    S.E. Stanca, R. Müller, M. Urban, A. Csaki, F. Froehlich, C. Krafft, J. Popp, W. Fritzsche, Catal. Sci. Technol. 2, 1472–1479 (2012)CrossRefGoogle Scholar
  51. 51.
    J. Ng, S. Xu, X. Zhang, H.Y. Yang, D.D. Sun, Adv. Funct. Mater. 20, 4287–4294 (2010)CrossRefGoogle Scholar
  52. 52.
    X. Yan, X. Huang, Y. Fang, Y. Min, Z. Wu, W. Li, J. Yuan, L. Tan, Int. J. Electrochem. Sci. 9, 5155–5163 (2014)Google Scholar
  53. 53.
    M. Ueda, S. Otsuka-Yao-Matsuo, Sci. Technol. Adv. Mater. 5, 187–193 (2004)CrossRefGoogle Scholar
  54. 54.
    T. Omata, S. Otsuka-Yao-Matsuo, J. Photochem. Photobiol. 156, 243–248 (2003)CrossRefGoogle Scholar
  55. 55.
    Z. Jin, X. Zhang, Y. Li, S. Li, G. Lu, Catal. Commun. 8, 1267–1273 (2007)CrossRefGoogle Scholar
  56. 56.
    A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  57. 57.
    J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, ACS Nano 4, 387–395 (2009)CrossRefGoogle Scholar
  58. 58.
    A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 33, 1534–1539 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Ali Ehsan
    • 1
    Email author
  • Rabia Naeem
    • 2
  • Vickie McKee
    • 3
  • Abdul Rehman
    • 4
  • Abbas Saeed Hakeem
    • 1
  • Muhammad Mazhar
    • 5
  1. 1.Center of Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of ChemistryGovernment College UniversityLahorePakistan
  3. 3.School of Chemical SciencesDublin City UniversityGlasnevinIreland
  4. 4.Department of ChemistryKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  5. 5.Department of Environmental SciencesFatima Jinnah Women UniversityRawalpindiPakistan

Personalised recommendations