Remarkable self-organization and unusual conductivity behavior in cellulose nanocrystal-PEDOT: PSS nanocomposites
- 76 Downloads
Abstract
Aqueous suspensions of cellulose nanocrystals were blended with Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) [PEDOT:PSS], and cast into thin films. The morphology, structure and electrical properties of the resulting nanocomposite thin films were thoroughly characterized. We found that the CNC–PEDOT:PSS blends self-organize into a layered vertical stack with a pitch of 100–200 nm while retaining a continuous percolation network for PEDOT. Atomic force microscopy, dynamic light scattering and multi-angle light scattering measurements confirmed the wrapping of polymer chains around the rod-like CNCs. The blended films exhibited improved molecular ordering of the PEDOT chains with concomitant improvement in the carrier mobility. The remarkable self-organization and enhanced structural order enabled the CNC–PEDOT:PSS blends to exhibit a high conductivity typical of PEDOT:PSS even when the content of the insulating CNCs in the nanocomposite was as high as 50 wt%.
Notes
Acknowledgements
This work was made possible by funding support from NSERC, Alberta Innovates, FPInnovations, CFI and NRC-NINT. We thank Dr. Wadood Hamad and his team at FPInnovations for constructive discussions and assistance with sample characterization. P. B. thanks MITACS Globalink while U.K.T. and A.M. thank Alberta Innovates for scholarship awards. Innotech Alberta is acknowledged for providing CNC samples.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Y.L. Habibi, A. Lucian, O.J. Rojas, Chem. Rev. 110, 3479 (2010)CrossRefGoogle Scholar
- 2.T. Abitbol, A. Rivkin, Y. Cao et al., Curr. Opin. Biotechnol. 39, 76 (2016). https://doi.org/10.1016/j.copbio.2016.01.002 CrossRefGoogle Scholar
- 3.J.P.F. Lagerwall, C. Schütz, M. Salajkova et al., NPG Asia Mater. 6, e80 (2014). https://doi.org/10.1038/am.2013.69 CrossRefGoogle Scholar
- 4.N. Lin, A. Dufresne, Eur. Polym. J. 59, 302 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.025 CrossRefGoogle Scholar
- 5.A. Sinha, E.M. Martin, K.-T. Lim et al., J. Biosyst. Eng. 40, 373 (2015). https://doi.org/10.5307/jbe.2015.40.4.373 CrossRefGoogle Scholar
- 6.X. Wang, C. Yao, F. Wang, Z. Li (2017) Small. https://doi.org/10.1002/smll.201702240 Google Scholar
- 7.R. Sabo, A. Yermakov, C.T. Law, R. Elhajjar, J. Renew. Mater. 4, 297 (2016). https://doi.org/10.7569/jrm.2016.634114 CrossRefGoogle Scholar
- 8.A.G. Dumanli, H.M. van der Kooij, G. Kamita et al., ACS Appl Mater. Interfaces 6, 12302 (2014). https://doi.org/10.1021/am501995e CrossRefGoogle Scholar
- 9.X. Mu, D.G. Gray, Langmuir 30, 9256 (2014). https://doi.org/10.1021/la501741r CrossRefGoogle Scholar
- 10.I. Usov, G. Nystrom, J. Adamcik et al., Nat. Commun. 6, 7564 (2015). https://doi.org/10.1038/ncomms8564 CrossRefGoogle Scholar
- 11.Y. Zong, T. Zheng, P. Martins, S. Lanceros-Mendez, Z. Yue, M.J. Higgins, Nat. Commun. 8, 38 (2017). https://doi.org/10.1038/s41467-017-00034-4 CrossRefGoogle Scholar
- 12.M. Mariano, N.El Kissi, A. Dufresne, J. Polym. Sci., Part B: Polym. Phys. 52, 791 (2014). https://doi.org/10.1002/polb.23490 CrossRefGoogle Scholar
- 13.J. George, S.N. Sabapathi, Nanotechnol. Sci. Appl. 8, 45 (2015). https://doi.org/10.2147/NSA.S64386 CrossRefGoogle Scholar
- 14.Z. Lian, W. Wang, G. Li, F. Tian, K.S. Schanze, H. Li, ACS Appl. Mater. Interfaces. 9, 16959 (2017). https://doi.org/10.1021/acsami.6b11494 CrossRefGoogle Scholar
- 15.W. Kang, C. Yan, C.Y. Foo, P.S. Lee, Adv. Funct. Mater. 25, 4203 (2015). https://doi.org/10.1002/adfm.201500527 CrossRefGoogle Scholar
- 16.S. Ji, B.G. Hyun, K. Kim et al., NPG Asia Mater. 8, e299 (2016). https://doi.org/10.1038/am.2016.113 CrossRefGoogle Scholar
- 17.H. Zhu, Z. Fang, Z. Wang et al., ACS Nano 10, 1369 (2016). https://doi.org/10.1021/acsnano.5b06781 CrossRefGoogle Scholar
- 18.Y. Zhou, C. Fuentes-Hernandez, T.M. Khan et al., Sci. Rep. 3, 1536 (2013). https://doi.org/10.1038/srep01536 CrossRefGoogle Scholar
- 19.Q. Zhang, W. Bao, A. Gong et al., Nanoscale 8, 14237 (2016). https://doi.org/10.1039/c6nr01534d CrossRefGoogle Scholar
- 20.Y. Fujisaki, H. Koga, Y. Nakajima et al., Adv. Funct. Mater. 24, 1657 (2014). https://doi.org/10.1002/adfm.201303024 CrossRefGoogle Scholar
- 21.D. Gaspar, S.N. Fernandes, A.G. de Oliveira et al., Nanotechnology 25, 094008 (2014). https://doi.org/10.1088/0957-4484/25/9/094008 CrossRefGoogle Scholar
- 22.W. Wu, N.G. Tassi, H. Zhu, Z. Fang, L Hu, ACS Appl. Mater. Interfaces 7, 26860 (2015). https://doi.org/10.1021/acsami.5b09249 CrossRefGoogle Scholar
- 23.S. Purandare, E.F. Gomez, A.J. Steckl, Nanotechnology 25, 094012 (2014). https://doi.org/10.1088/0957-4484/25/9/094012 CrossRefGoogle Scholar
- 24.S. Yun, J. Kim, Z. Ounaies (2006) Smart. Mater. Struct. 15, N61. https://doi.org/10.1088/0964-1726/15/3/n02 CrossRefGoogle Scholar
- 25.S. Yun, J. Kim, Smart Mater. Struct. 16, 1471 (2007). https://doi.org/10.1088/0964-1726/16/4/062 CrossRefGoogle Scholar
- 26.H. Wang, H. Pang, D. Wei et al., J. Mater. Sci.: Mater. Electron. 29, 9829 (2018). https://doi.org/10.1007/s10854-018-9023-2 Google Scholar
- 27.D. Hao, B. Xu, Z. Cai, J. Mater. Sci.: Mater. Electron. 29, 9218 (2018). https://doi.org/10.1007/s10854-018-8950-2 Google Scholar
- 28.K. Karimi, E. Jabari, E. Toyserkani, P. Lee-Sullivan, J. Mater. Sci.: Mater. Electron. 29, 2537 (2018). https://doi.org/10.1007/s10854-017-8176-8 Google Scholar
- 29.K. Sun, S. Zhang, P. Li et al., J. Mater. Sci.: Mater. Electron. 26, 4438 (2015). https://doi.org/10.1007/s10854-015-2895-5 Google Scholar
- 30.E. Tkalya, M. Ghislandi, W. Thielemans, P. van der Schoot, G. de With, C. Koning, ACS Macro Lett. 2, 157 (2013). https://doi.org/10.1021/mz300597j CrossRefGoogle Scholar
- 31.A. Dufresne, Mater. Today 16, 220 (2013). https://doi.org/10.1016/j.mattod.2013.06.004 CrossRefGoogle Scholar
- 32.M.-C. Li, Q. Wu, K. Song, S. Lee, Y. Qing, Y. Wu, ACS Sustain. Chem. Eng. 3, 821 (2015). https://doi.org/10.1021/acssuschemeng.5b00144 CrossRefGoogle Scholar
- 33.M.L. Hassan, C.M. Moorefield, H.S. Elbatal, G.R. Newkome, D.A. Modarelli, N.C. Romano, Mater. Sci. Eng. B 177, 350 (2012). https://doi.org/10.1016/j.mseb.2011.12.043 CrossRefGoogle Scholar
- 34.L. Du, J. Wang, Y. Zhang, C. Qi, M.P. Wolcott, Z. Yu (2017) Nanomaterials (Basel). https://doi.org/10.3390/nano7030051 Google Scholar
- 35.F. Zabihi, Y. Xie, S. Gao, M. Eslamian, Appl. Surf. Sci. 338, 163 (2015). https://doi.org/10.1016/j.apsusc.2015.02.128 CrossRefGoogle Scholar
- 36.D. Yoo, J. Kim, J.H. Kim, Nano Res. 7, 717 (2014). https://doi.org/10.1007/s12274-014-0433-z CrossRefGoogle Scholar
- 37.D. Some, Biophys. Rev. 5, 147 (2013). https://doi.org/10.1007/s12551-013-0107-1 CrossRefGoogle Scholar
- 38.Y. Boluk, C. Danumah (2013) J. Nanopart. Res. https://doi.org/10.1007/s11051-013-2174-4 Google Scholar
- 39.E.E. Ureña-Benavides, C.L. Kitchens, (2012) RSC Adv. 2: 1096. https://doi.org/10.1039/c1ra00391g CrossRefGoogle Scholar
- 40.S. Beck, J. Bouchard, R. Berry, Biomacromol 12, 167 (2011)CrossRefGoogle Scholar
- 41.V. Khoshkava, M.R. Kamal, Biomacromol 14, 3155 (2013). https://doi.org/10.1021/bm400784j CrossRefGoogle Scholar
- 42.Z. Abas, H.S. Kim, J. Kim, J.-H. Kim (2014) Front. Mater. https://doi.org/10.3389/fmats.2014.00017 Google Scholar
- 43.W. Meng, R. Ge, Z. Li et al., ACS Appl. Mater. Interfaces 7, 14089 (2015). https://doi.org/10.1021/acsami.5b03309 CrossRefGoogle Scholar
- 44.J. Luo, D. Billep, T. Waechtler et al., (2013) J. Mater. Chem. A. https://doi.org/10.1039/c3ta11209h Google Scholar
- 45.X. Xu, F. Liu, L. Jiang, J.Y. Zhu, D. Haagenson, D.P. Wiesenborn, ACS Appl. Mater Interfaces 5, 2999 (2013). https://doi.org/10.1021/am302624t CrossRefGoogle Scholar
- 46.N. SM Gierlinger, A. Reinecke, I. Burgert (2006) Biomacromolecules 7, 2077CrossRefGoogle Scholar
- 47.A.E. Lewandowska, S.J. Eichhorn, J. Raman Spectrosc. 47, 1337 (2016). https://doi.org/10.1002/jrs.4966 CrossRefGoogle Scholar
- 48.U.P. Agarwal, R. Sabo, R.S. Reiner, C.M. Clemons, A.W. Rudie, Appl. Spectrosc. 66, 750 (2012). https://doi.org/10.1366/11-06563 CrossRefGoogle Scholar
- 49.P. GR, S.R.V.A. Kanwat, J. Jang, Mater. Res. Bull. 74, 346 (2016). https://doi.org/10.1016/j.materresbull.2015.10.044 CrossRefGoogle Scholar
- 50.T.P. Nguyen, S.A. de Vos, Appl. Surf. Sci. 221, 330 (2004). https://doi.org/10.1016/S0169-4332(03)00952-8 CrossRefGoogle Scholar
- 51.A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy (2012) J. Appl. Phys. 112. https://doi.org/10.1063/1.4768265
- 52.W. Shi, Q. Yao, S. Qu, H. Chen, T. Zhang, L. Chen (2017) NPG Asia Mater. 9: e405. https://doi.org/10.1038/am.2017.107 https://www.nature.com/articles/am2017107#supplementary-information
- 53.P. Veerender, V. Saxena, A.K. Chauhan et al., Sol. Energy Mater. Sol. Cells 120, 526 (2014). https://doi.org/10.1016/j.solmat.2013.09.034 CrossRefGoogle Scholar
- 54.J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, Polymer 45, 8443 (2004). https://doi.org/10.1016/j.polymer.2004.10.001 CrossRefGoogle Scholar
- 55.C.Sheng Hsiung, C. Chien-Hung, K. Feng-Sheng, T. Chuen-Lin, W. Chun-Guey, IEEE Photonics J. 6, 1 (2014). https://doi.org/10.1109/jphot.2014.2331254 CrossRefGoogle Scholar
- 56.J. Hwang, I. Schwendeman, B.C. Ihas et al., (2011) Phys. Rev. B. https://doi.org/10.1103/PhysRevB.83.195121 Google Scholar
- 57.J. Saghaei, A. Fallahzadeh, T. Saghaei, Org. Electron. 24, 188 (2015). https://doi.org/10.1016/j.orgel.2015.06.002 CrossRefGoogle Scholar
- 58.X. Crispin, F.L.E. Jakobsson, A. Crispin et al., (2006) Chem. Mater. 18, 4354. https://doi.org/10.1021/cm061032&%23x002B; CrossRefGoogle Scholar
- 59.P.-W. Sze, K.-W. Lee, P.-C. Huang, D.-W. Chou, B.-S. Kao, C.-J. Huang, Energies 10, 716 (2017)CrossRefGoogle Scholar
- 60.J.E. McCarthy, C.A. Hanley, L.J. Brennan, V.G. Lambertini, Y.K. Gun’ko, J. Mater. Chem. C 2, 764 (2014). https://doi.org/10.1039/C3TC31951B CrossRefGoogle Scholar