Aligned polyaniline/porous biomass carbon composites with superior microwave absorption properties

  • Qixin Yang
  • Wentong Yang
  • Yiyuan Shi
  • Lujun Yu
  • Xiang Li
  • Laiming Yu
  • Yubing Dong
  • Yaofeng ZhuEmail author
  • Yaqin Fu


Hierarchical structure composites of loofah derived biomass carbon (PBC) decorated by aligned polyaniline (PANI) were successfully fabricated by simple carbonization and in situ oxidative polymerization. The morphology and structural of composites was studied. The microwave absorbing performance of aligned PANI/PBC was investigated in the frequency range of 2–18 GHz. The results indicated that aligned PANI/PBC with special structure possessed more distinct dielectric response characteristics and enhanced microwave absorbing performance. The minimum reflection loss (RL) value of aligned PANI/PBC was up to − 44.8 dB at 10.02 GHz and the effective absorption frequency width (RL < − 10 dB) is in the 5.58–18 GHz range with the thickness range of 1–3 mm. The excellent microwave absorbing performance of aligned PANI/PBC was mainly correlate with the multiple relaxation polarization, good impedance matching and the synergistic effect between PANI nanorods and PBC.



This work was supported by National Natural Science Foundation of China (No. 51503183); Key Program for International Science and Technology Cooperation Projects of Ministry of Science and Technology of China (No. 2016YFE0125900); Program for Innovative Research Team of Zhejiang Sci-Tech University (15010039-Y).


  1. 1.
    Y.C. Yin, X.F. Liu, X.J. Wei, J.L. Shui, ACS Appl. Mater. Interface. 8(50), 34686 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, Y.C. Du, R. Qiang, C.H. Tian, P. Xu, X.J. Han, Adv. Mater. Interface. 3(7), 1500684 (2016)CrossRefGoogle Scholar
  3. 3.
    L.J. Yu, Y.F. Zhu, Y.Q. Fu, Appl. Surf. Sci. 427, 451 (2018)CrossRefGoogle Scholar
  4. 4.
    P.B. Liu, Y. Huang, J. Yan, Y.W. Yang, Y. Zhao, ACS Appl. Mater. Interface. 8(8), 5536 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Qiang, Y.C. Du, Y. Wang, N. Wang, C.H. Tian, J. Ma, P. Xu, X.J. Han, Carbon 98, 599 (2016)CrossRefGoogle Scholar
  6. 6.
    G.J.H. Melvin, Q.Q. Ni, Y. Suzuki, T. Natsuki, J. Mater. Sci. 49(14), 5199 (2014)CrossRefGoogle Scholar
  7. 7.
    S.S.S. Afghahi, A. Shokuhfar, J. Magn. Magn. Mater. 370, 37 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Zhang, Y. Li, R. Liu, Y. Rao, H.W. Rong, G.W. Qin, ACS Appl. Mater. Interface. 8(5), 3494 (2016)CrossRefGoogle Scholar
  9. 9.
    Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, J. Mater. Sci.: Mater. Electron. 29(20), 17122 (2018)Google Scholar
  10. 10.
    Z. Durmus, A. Durmus, H. Kavas, J. Mater. Sci. 50(3), 1201 (2015)CrossRefGoogle Scholar
  11. 11.
    N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interface. 9(3), 2973 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Shah, A. Ding, Y.H. Wang, L. Zhang, D.X. Wang, J. Muhammad, H. Huang, Y.P. Duan, X.L. Dong, Z.D. Zhang, Carbon 96, 987 (2016)CrossRefGoogle Scholar
  13. 13.
    N. Zhou, Q.D. An, W. Zheng, Z.Y. Xiao, S.R. Zhai, RSC Adv. 6(100), 98128 (2016)CrossRefGoogle Scholar
  14. 14.
    N.N. Wang, F. Wu, A.M. Xie, X.Q. Dai, M.X. Sun, Y.Y. Qiu, Y. Wang, X.L. Lv, M.Y. Wang, RSC Adv. 5(51), 40531 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, Q.T. Zhang, Nanoscale 9(22), 7408 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.C. Wu, K. Tian, T. Huang, W. Hu, F.F. Xie, J.J. Wang, M.X. Su, L. Li, ACS Appl. Mater. Interface. 10(13), 11108 (2018)CrossRefGoogle Scholar
  17. 17.
    D. Li, H.Y. Liao, H. Kikuchi, T. Liu, ACS Appl. Mater. Interface. 9(51), 44704 (2017)CrossRefGoogle Scholar
  18. 18.
    S.K. Singh, H. Prakash, M.J. Akhtar, K.K. Kar, ACS Sustain. Chem. Eng. 6(4), 5381 (2018)CrossRefGoogle Scholar
  19. 19.
    M.S.S. Dorraji, M.H. Rasoulifard, M.H. Khodabandeloo, M. Rastgouy-Houjaghan, H.K. Zarajabad, Appl. Surf. Sci. 366, 210 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, X.M. Wu, W.Z. Zhang, Mater. Lett. 165, 71 (2016)CrossRefGoogle Scholar
  21. 21.
    B.R. Kim, H.K. Lee, E. Kim, S.H. Lee, Synth. Met. 160(17–18), 1838 (2010)CrossRefGoogle Scholar
  22. 22.
    Y.K. Zhou, W. Zhang, Z.H. Pan, B.X. Zhao, J. Mater. Sci.: Mater. Electron. 28(15), 10921 (2017)Google Scholar
  23. 23.
    C.H. Tian, Y.C. Du, P. Xu, R. Qing, Y. Wang, D. Ding, J.L. Xue, J. Ma, H.T. Zhao, X.J. Han, ACS Appl. Mater. Interface 7(36), 20090 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Tian, F.B. Meng, F.C. Meng, X.N. Chen, Y.F. Guo, Y. Wang, W.J. Zhu, Z.W. Zhou, ACS. Appl. Mater. Interface 9(18), 15711 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.J. Hu, X. Tong, H. Zhuo, L.X. Zhong, X.W. Peng, ACS. Sustain. Chem. Eng. 5(10), 8663 (2017)CrossRefGoogle Scholar
  26. 26.
    Z. Jin, X.D. Yan, Y.H. Yu, G.J. Zhao, J. Mater. Chem. A 2(10), 11706 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Sivanantham, P. Ganesan, S. Shanmugam, Appl. Catal. B: Environ. 237, 1148 (2018)CrossRefGoogle Scholar
  28. 28.
    G.Z. Shen, B.Q. Mei, H.Y. Wu, H.Y. Wei, X.M. Fang, Y.W. Xu, J. Phys. Chem. C 121(7), 3846 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Stejskal, I. Sapurina, M. Trchová, Prog. Polym. Sci. 35(12), 1420 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Compos. Sci. Technol. 98, 1 (2014)CrossRefGoogle Scholar
  31. 31.
    L.J. Ren, G.N. Zhang, Z. Yan, L.P. Kang, H. Xu, F. Shi, Z.B. Lei, Z.H. Liu, ACS. Appl. Mater. Interface 7(51), 28294 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Yuan, S. Zhou, Y. Liu, J. Tang, Environ. Sci. Technol. 47(24), 14525 (2013)CrossRefGoogle Scholar
  33. 33.
    L. Wang, Y.J. Ye, X.P. Lu, Z.B. Wen, Z. Li, H.Q. Hou, Y.H. Song, Sci. Rep. 3, 3568 (2013)CrossRefGoogle Scholar
  34. 34.
    A.G. Tabrizi, N. Arsalani, H. Namazi, I. Ahadzadeh, J. Electroanal. Chem. 798, 34 (2017)CrossRefGoogle Scholar
  35. 35.
    A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K. Dhawan, J. Mater. Chem. A. 2(10), 3581 (2014)CrossRefGoogle Scholar
  36. 36.
    Y.Y. Yang, Y.F. Hao, J.H. Yuan, L. Niu, F. Xia, Carbon 78, 279 (2014)CrossRefGoogle Scholar
  37. 37.
    T. Liu, X.B. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C 4(8), 1727 (2016)CrossRefGoogle Scholar
  38. 38.
    J.Y. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X.G. Yue, Z.H. Jiang, Nanoscale 8(16), 8899 (2016)CrossRefGoogle Scholar
  39. 39.
    M. Zhong, Y. Song, Y. Li, C. Ma, X.L. Zhai, J.L. Shi, Q.G. Guo, L. Liu, J. Power. Sources. 217, 6 (2012)CrossRefGoogle Scholar
  40. 40.
    G.L. Wu, Y.H. Cheng, Z.H. Yang, Z.R. Jia, H.J. Wu, L.J. Yang, H.L. Li, P.Z. Guo, H.L. Lv, Chem. Eng. J. 333, 519 (2018)CrossRefGoogle Scholar
  41. 41.
    Y.T. Luan, L. Wang, S.E. Guo, B.J. Jiang, D.D. Zhao, H.J. Yan, C.G. Tian, H.G. Fu, RSC. Adv. 5(53), 42430 (2015)CrossRefGoogle Scholar
  42. 42.
    M.M. Mahat, D. Mawad, G.W. Nelson, S. Fearn, R.G. Palgrave, D.J. Payne, M.M. Stevens, J. Mater. Chem. C 3(27), 7180 (2015)CrossRefGoogle Scholar
  43. 43.
    V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Carbon 50(6), 2202 (2012)CrossRefGoogle Scholar
  44. 44.
    L. Deng, M. Han, Appl. Phys. Lett. 91(2), 023119 (2007)CrossRefGoogle Scholar
  45. 45.
    G.Q. Wang, X.D. Chen, Y.P. Duan, S.H. Liu, J. Alloy. Compd. 454(1–2), 340 (2008)CrossRefGoogle Scholar
  46. 46.
    X. Li, L.J. Yu, L.M. Yu, Y.B. Dong, Q. Gao, X.Q. Yang, W.T. Yang, Y.F. Zhu, F.Y. Fu, Chem. Eng. J. 352, 745 (2018)CrossRefGoogle Scholar
  47. 47.
    L.J. Yu, Q.X. Yang, J.L. Liao, Y.F. Zhu, X. Li, W.T. Yang, Y.Q. Fu, Chem. Eng. J. 352, 490 (2018)CrossRefGoogle Scholar
  48. 48.
    B. Zhao, G. Shao, B.B. Fan, W.H. Guo, Y.Q. Chen, R. Zhang, Appl. Surf. Sci. 332, 112 (2005)CrossRefGoogle Scholar
  49. 49.
    H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu, C.L. Zhu, Y.J. Chen, X.Y. Xue, C.W. Sun, M.S. Cao, J. Mater. Chem. 22(40), 21679 (2012)CrossRefGoogle Scholar
  50. 50.
    P.B. Liu, Y. Huang, X. Sun, ACS. Appl. Mater. Interface 5(23), 12355 (2013)CrossRefGoogle Scholar
  51. 51.
    W. Feng, Y.M. Wang, J.C. Chen, L. Wang, L.X. Guo, J.H. Ouyang, D.C. Jia, Y. Zhou, Carbon 108, 52 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qixin Yang
    • 1
  • Wentong Yang
    • 1
  • Yiyuan Shi
    • 1
  • Lujun Yu
    • 1
  • Xiang Li
    • 1
  • Laiming Yu
    • 1
  • Yubing Dong
    • 1
  • Yaofeng Zhu
    • 1
    Email author
  • Yaqin Fu
    • 1
  1. 1.Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyMinistry of Education, Zhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations