Advertisement

Optical properties of p-type SnOx thin films deposited by DC reactive sputtering

  • D. E. Guzmán-CaballeroEmail author
  • M. A. Quevedo-López
  • R. Ramírez-Bon
Article
  • 42 Downloads

Abstract

Refractive index (n), extinction coefficient (k), effective complex dielectric function (ε) and band gap energy (Eg) of p-type SnOx thin films from 0.75 to 4 eV are studied. 25 nm thick films were deposited by direct current (DC) magnetron sputtering in reactive argon and oxygen atmosphere at different relative oxygen partial pressure (OPP) followed by a post annealing treatment at 250 °C in air atmosphere for 30 min. The relative high Hall effect mobility (μ) of the SnOx was attributed to the dominant SnO phase in films grown at 15% OPP. Films deposited at 5 and 11% OPP showed incomplete Sn oxidation resulting in a mixture of Sn and SnO phases with lower hole mobility. Optical transmittance (T) and reflectance (R) are described by assuming a model where the p-type SnOx films are defined by a dispersion formula based on a generalization of the Lorentz oscillator model. The roughness of the films (r) was modeled by a Bruggeman effective medium approximation (BEMA). From the optical analysis, k in the visible spectral region show high values for films with phase mixture, while films with single SnO phase presented negligible values. Films with single SnO phase have low n, this latter result from the lower compact microstructure of these films. Also, energies associated to direct and indirect transitions of the Brillouin zone of the SnOx films were identified from the evaluated ε. Finally, the increase in the values of Eg energy was related to the increase in the SnO phase.

References

  1. 1.
    Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93(3), 032113 (2008).  https://doi.org/10.1063/1.2964197 CrossRefGoogle Scholar
  2. 2.
    H. Hosono, Y. Ogo, H. Yanagi, T. Kamiya, Electrochem. Solid-State Lett. 14, H13 (2011).  https://doi.org/10.1149/1.3505288 CrossRefGoogle Scholar
  3. 3.
    J.A. Caraveo-Frescas, P.K. Nayak, H.A. Al-Jawhari, D.B. Granato, U. Schwingenschlögl, H.N. Alshareef, ACS Nano 7(6), 5160 (2013).  https://doi.org/10.1021/nn400852r CrossRefGoogle Scholar
  4. 4.
    L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Tröster, Appl. Phys. Rev. 3(2), 021303 (2016).  https://doi.org/10.1063/1.4953034 CrossRefGoogle Scholar
  5. 5.
    A. Togo, F. Oba, I. Tanaka, K. Tatsumi, Phys. Rev. B 74, 195128 (2006).  https://doi.org/10.1103/PhysRevB.74.195128 CrossRefGoogle Scholar
  6. 6.
    E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.H.K. Park, C.S. Hwang, R. Martins, Appl. Phys. Lett. 97(5), 052105 (2010).  https://doi.org/10.1063/1.3469939 CrossRefGoogle Scholar
  7. 7.
    D.E. Guzmán-Caballero, M.A. Quevedo-López, W.D. la Cruz, R. Ramírez-Bon, Semicond. Sci. Technol. 33(3), 035010 (2018)CrossRefGoogle Scholar
  8. 8.
    Z. Chen, X. Xiao, Y. Shao, W. Meng, S. Zhang, L. Yue, L. Xie, P. Zhang, H. Lu, S. Zhang, in 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2014), pp. 1–3.  https://doi.org/10.1109/ICSICT.2014.7021451
  9. 9.
    K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93(20), 202107 (2008).  https://doi.org/10.1063/1.3026539 CrossRefGoogle Scholar
  10. 10.
    J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988).  https://doi.org/10.1103/PhysRevB.38.11322 CrossRefGoogle Scholar
  11. 11.
    Y. Nakano, S. Saeki, T. Morikawa, Appl. Phys. Lett. 94(2), 022111 (2009).  https://doi.org/10.1063/1.3072804 CrossRefGoogle Scholar
  12. 12.
    S. Chen, C. Wen, T. Kuo, W. Peng, Thin Solid Films 572, 51 (2014).  https://doi.org/10.1016/j.tsf.2014.07.062 (The 41st International Conference on Metallurgical Coatings and Thin Films)CrossRefGoogle Scholar
  13. 13.
    A. Mendoza-Galván, M. Vidales-Hurtado, A. López-Beltrán, Thin Solid Films 517(10), 3115 (2009).  https://doi.org/10.1016/j.tsf.2008.11.094 (7th International Conference on Coatings on Glass and Plastics (ICCG7))CrossRefGoogle Scholar
  14. 14.
    I. Pintor-Monroy, D. Barrera, B. Murillo-Borjas, F. Ochoa-Estrella, J.W.P. Hsu, M.A. Quevedo-López, ACS Appl. Mater. Interfaces 10(44), 38159–38165 (2018).  https://doi.org/10.1021/acsami.8b080 CrossRefGoogle Scholar
  15. 15.
    G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984).  https://doi.org/10.1103/PhysRevLett.53.2339 CrossRefGoogle Scholar
  16. 16.
    K. Nomura, T. Kamiya, H. Hosono, Adv. Mater. 23(30), 3431 (2011).  https://doi.org/10.1002/adma.201101410 CrossRefGoogle Scholar
  17. 17.
    W. Guo, L. Fu, Y. Zhang, K. Zhang, L.Y. Liang, Z.M. Liu, H.T. Cao, X.Q. Pan, Appl. Phys. Lett. 96(4), 042113 (2010).  https://doi.org/10.1063/1.3277153 CrossRefGoogle Scholar
  18. 18.
    A. Garzon-Fontecha, W. De La Cruz, M. Quevedo, Surf. Interface Anal. 49(12), 1225 (2017).  https://doi.org/10.1002/sia.6313 CrossRefGoogle Scholar
  19. 19.
    D. Neas, P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2012).  https://doi.org/10.2478/s11534-011-0096-2 Google Scholar
  20. 20.
    MDI Jade. Powder diffraction file of Sn, Tin, syn, PDF card #04-0673Google Scholar
  21. 21.
    MDI Jade. Powder diffraction file of SnO, Romarchite, syn, PDF card #06-0395Google Scholar
  22. 22.
    Q. Liu, L. Liang, H. Cao, H. Luo, H. Zhang, J. Li, X. Li, F. Deng, J. Mater. Chem. C 3, 1077 (2015).  https://doi.org/10.1039/C4TC02184C CrossRefGoogle Scholar
  23. 23.
    A. Herrera-Gomez, M. Bravo-Sanchez, F. Aguirre-Tostado, M. Vazquez-Lepe, J. Electron Spectrosc. Relat. Phenom. 189, 76 (2013).  https://doi.org/10.1016/j.elspec.2013.07.006 CrossRefGoogle Scholar
  24. 24.
    A. Herrera-Gomez, M. Bravo-Sanchez, O. Ceballos-Sanchez, M.O. Vazquez-Lepe, Surf. Interface Anal. 46(10–11), 897 (2014).  https://doi.org/10.1002/sia.5453.SIA-13-0322.R1 CrossRefGoogle Scholar
  25. 25.
    O. Ceballos-Sanchez, A. Sanchez-Martinez, M.O. Vazquez-Lepe, T. Duong, R. Arroyave, F. Espinosa-Magaa, A. Herrera-Gomez, J. Appl. Phys. 112(5), 053527 (2012).  https://doi.org/10.1063/1.4751435 CrossRefGoogle Scholar
  26. 26.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of Photoelectron Spectroscopy (Physical Electronics Inc, Eden Prairie, 1992)Google Scholar
  27. 27.
    A. Herrera-Gomez. Aanalyzer: a program for the analysis of infrared spectra and photoemission. (2017). www.rdataa.com/AAnalyzer
  28. 28.
    I.T. Cho, U. Myeonghun, S.H. Song, J.H. Lee, H.I. Kwon, Semicond. Sci. Technol. 29(4), 045001 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Luo, L. Liang, H. Cao, M. Dai, Y. Lu, M. Wang, ACS Appl. Mater. Interfaces 7(31), 17023 (2015).  https://doi.org/10.1021/acsami.5b02964 CrossRefGoogle Scholar
  30. 30.
    L.Y. Liang, H.T. Cao, X.B. Chen, Z.M. Liu, F. Zhuge, H. Luo, J. Li, Y.C. Lu, W. Lu, Appl. Phys. Lett. 100(26), 263502 (2012).  https://doi.org/10.1063/1.4731271 CrossRefGoogle Scholar
  31. 31.
    C. Kim, S. Cho, S. Kim, S.E. Kim, ECS J. Solid State Sci. Technol. 6(12), P765 (2017).  https://doi.org/10.1149/2.0061712jss CrossRefGoogle Scholar
  32. 32.
    F. Bergaya, G. Lagaly, Handbook of Clay Science, 2nd edn., Developments in Clay Science (Elsevier, Amsterdam, 2013)Google Scholar
  33. 33.
    S. Hofmann, Auger-and X-Ray Photoelectron Spectroscopy in Materials Science, vol. 49 (Springer-Verlag, Berlin, 2013).  https://doi.org/10.1007/978-3-642-27381-0 CrossRefGoogle Scholar
  34. 34.
    J. Geurts, S. Rau, W. Richter, F. Schmitte, Thin Solid Films 121(3), 217 (1984).  https://doi.org/10.1016/0040-6090(84)90303-1 CrossRefGoogle Scholar
  35. 35.
    E. Zawaideh. Nondestructive optical techniques for simultaneously measuring optical constants and thicknesses of single and multilayer films (1999). https://patents.google.com/patent/US5889592. US Patent 5889592
  36. 36.
    H.G. Tompkins, E.A. Irene (eds.), Handbook of Ellipsometry (William Andrew Publishing, Norwich, 2005)Google Scholar
  37. 37.
    S.F. El-Sayed El-Zaiat, Opt. Eng. 51, 51 (2012).  https://doi.org/10.1117/1.OE.51.7.073604 Google Scholar
  38. 38.
    L.Y. Liang, Z.M. Liu, H.T. Cao, Y.Y. Shi, X.L. Sun, Z. Yu, A.H. Chen, H.Z. Zhang, Y.Q. Fang, ACS Appl. Mater, Interfaces 2(6), 1565 (2010).  https://doi.org/10.1021/am100236s CrossRefGoogle Scholar
  39. 39.
    A. Mendoza-Galván, G. Arreola-Jardón, L. Karlsson, P. Persson, S. Jiménez-Sandoval, Thin Solid Films 571, 706 (2014).  https://doi.org/10.1016/j.tsf.2014.01.042 (6th International Conference on Spectroscopic Ellipsometry (ICSE-VI))CrossRefGoogle Scholar
  40. 40.
    J.I. Pankove, Optical Processes in Semiconductors, 2nd edn. (Dover Publication, Mineola, 2010)Google Scholar
  41. 41.
    C.C. Kim, J.W. Garland, H. Abad, P.M. Raccah, Phys. Rev. B 45, 11749 (1992).  https://doi.org/10.1103/PhysRevB.45.11749 CrossRefGoogle Scholar
  42. 42.
    Q.J. Liu, Z.T. Liu, L.P. Feng, Comput. Mater. Sci. 47(4), 1016 (2010).  https://doi.org/10.1016/j.commatsci.2009.11.038 CrossRefGoogle Scholar
  43. 43.
    J.P. Allen, D.O. Scanlon, L.F.J. Piper, G.W. Watson, J. Mater. Chem. C 1, 8194 (2013).  https://doi.org/10.1039/C3TC31863J CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigación y de Estudios Avanzados del IPNUnidad QuerétaroQuerétaroMexico
  2. 2.Center for Engineering and Industrial Development, CIDESI, Division of MicrotechnologiesSantiago de QuerétaroMéxico
  3. 3.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA
  4. 4.Departamento de Investigación en Polímeros y MaterialesUniversidad de SonoraHermosilloMéxico

Personalised recommendations