Advertisement

Structural refinement, morphology and photocatalytic properties of β-(Ag2−2xZnx)MoO4 microcrystals synthesized by the sonochemical method

  • D. W. R. Coimbra
  • F. S. Cunha
  • J. C. Sczancoski
  • J. F. S. de Carvalho
  • F. R. C. de Macêdo
  • L. S. CavalcanteEmail author
Article

Abstract

In this paper, we report on structure, morphology, and photocatalytic (PC) properties of silver zinc molybdate [β-(Ag2−2xZnx)MoO4] microcrystals (x = 0; 0.01; 0.02 and 0.04) synthesized by the sonochemical method at 30 °C for 3 h. These microcrystals were structurally characterized by X-ray diffraction (XRD) patterns, Rietveld refinement data, micro-Raman and Fourier transform-infrared (FT-IR) spectroscopies. The morphological aspects (shape and average crystal size) and the chemical composition of β-Ag2MoO4 microcrystals were performed by field emission-scanning electron microscope (FE-SEM) and energy dispersive X-ray spectrometry (EDX), respectively. The optical behavior was monitored by ultraviolet–visible (UV–Vis) spectroscopy at room temperature. We investigate the PC properties for degradation of Remazol Brilliant Violet 5R (RBV5R) anionic dye by using four UV-C lamps (18 W each). XRD patterns, Rietveld refinement data, micro-Raman and FT-IR spectra indicate that all β-(Ag2−2xZnx)MoO4 microcrystals (x = 0; 0.01; 0.02 and 0.04) have a spinel-type cubic structure and space group \(\left( {Fd\bar {3}m} \right)\). Rietveld refinement results indicated that the Ag atoms were replaced by Zn atoms at A-site in Wyckoff positions. The micro-Raman spectra exhibited the presence of four Raman-active vibrational modes, while FT-IR spectra revealed only one infrared-active vibrational mode. FE-SEM images showed that the replacement of Ag atoms by those of Zn changed the growth process. Particularly, the increase of Zn content into the lattice changed the crystal shape from irregular sphere, cube, and octahedrons to irregular octahedrons and rhombic dodecahedron microcrystals, resulting in the appearance of pores on the crystal surfaces. Moreover, FE-SEM images indicated that the growth of these crystals is governed by aggregation and Ostwald ripening. Finally, we demonstrate for the first time that PC activity can be enhanced up to 80 min by approximately 97.28% for the degradation of RBV5R dye by using β-(Ag1.96Zn0.02)MoO4 microcrystals as photocatalyst and ammonium oxalate as hole scavenger.

Keywords

β–(Ag2−2xZnx)MoO4 crystals Rietveld refinement Band gap Photocatalytic activity 

Notes

Acknowledgements

The Brazilian authors acknowledge the financial support from the Brazilian research financing institutions CNPq (312318/2017-0, 350711/2012-7 and 479644/2012-8), CCN2-PPGCM-UFPI-LIMAV, GERATEC-UESPI, FAPESP-CDMF (14/26982-7) and CAPES.

References

  1. 1.
    E. Wenda, Phase diagram of V2O5–MoO3–Ag2O. I. Phase diagram of V2O5–Ag2O system. J. Therm. Anal. Calorim. 30, 879–887 (1985)Google Scholar
  2. 2.
    E. Wenda, High temperature reactions in the MoO3–Ag2O System. J. Therm. Anal. Calorim. 30, 879–887 (1985)Google Scholar
  3. 3.
    E. Wenda, Phase diagram of the V2O5–MoO3–Ag2O system, II. Phase diagram of MoO3–Ag2O system. J. Therm. Anal. Calorim. 36, 1417–1427 (1990)Google Scholar
  4. 4.
    K. Kuribayashi, H. Harigae, Y. Suzuki, Y. Uchida, Properties of Ag2O–MoO3 and In2O3–MoO3 compounds as visible light responsive photocatalysts. Energy Proc. 22, 114–118 (2012)Google Scholar
  5. 5.
    S.A. Suthanthiraraj, Y.D. Premchand, Molecular structural analysis of 55 mol% CuI-45 mol% Ag2MoO4 solid electrolyte using XPS and laser raman technique. Ionics. 10, 254–257 (2004)Google Scholar
  6. 6.
    R.C. Agrawal, M.L. Verma, R.K. Gupta, R. Kumar, R.M. Chandola, Ion transport and solid state battery studies on a new silver molybdate superionic glass system: x[0.75AgI:0.25AgCl]:(1-x)[Ag2O:MoO3]. Ionics. 8, 426–432 (2002)Google Scholar
  7. 7.
    Z. Wiśniewski, R. Wiśniewski, D. Zasada, R. Dziduszko, T. Wilczyńska, Structure and properties of rapidly quenched ionic conductors belonging to AgI–Ag2MoO4 family. J. Phys.: Conf. Ser. 144, 012084-1–012084-4 (2009)Google Scholar
  8. 8.
    A.K. Arof, S. Radhakrishna, Performance characteristics of quaternary silver-based battery systems. Mater. Sci. Eng. B. 20, 256–260 (1993)Google Scholar
  9. 9.
    M. May, Adding efficiency to general lab equipment. Science. 352, 614–616 (2016)Google Scholar
  10. 10.
    A.K. Arora, R. Nithya, S. Misra, T. Yagi, Behavior of silver molybdate at high-pressure. J. Solid State Chem. 196, 391–397 (2012)Google Scholar
  11. 11.
    C.H.B. Ng, W.Y. Fan, Uncovering metastable α-Ag2MoO4 phase under ambient conditions. overcoming high pressures by 2,3-Bis(2-pyridyl)pyrazine doping. Cryst. Growth Des. 15, 3032–3037 (2015)Google Scholar
  12. 12.
    Z. Wang, K. Dai, C. Liang, J. Zhang, G. Zhu, Facile synthesis of novel butterfly-like Ag2MoO4 nanosheets for visible-light driven photocatalysis. Mater. Lett. 196, 373–376 (2017)Google Scholar
  13. 13.
    F.S. Cunha, J.C. Sczancoski, I.C. Nogueira, V.G. de Oliveira, S.M.C. Lustosa, E. Longo, L.S. Cavalcante, Structural, morphological and optical investigation of β-Ag2MoO4 microcrystals obtained with different polar solvents. CrystEngComm. 17, 8207–8211 (2015)Google Scholar
  14. 14.
    X. Cui, S.H. Yu, L. Li, L. Biao, H. Li, M. Mo, X.-M. Liu, Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process. Chem. Eur. J. 10, 218–223 (2004)Google Scholar
  15. 15.
    L. Cheng, Q. Shao, M. Shao, X. Wei, Z. Wu, Photoswitches of one-dimensional Ag2MO4 (M=Cr, Mo, and W). J. Phys. Chem. C 113, 1764–1768 (2009)Google Scholar
  16. 16.
    G.S. Sousa, F.X. Nobre, E.A.A. Júnior, J.R. Sambrano, A.R. Albuquerque, R.S. Bindá, P.R.C. Couceiro, W.R. Brito, L.S. Cavalcante, M.R.M.C. Santos, J.M.E. de Matos, Hydrothermal synthesis, structural characterization and photocatalytic properties of β-Ag2MoO4 microcrystals: correlation between experimental and theoretical data, Arabian J. Chem. (2018).  https://doi.org/10.1016/j.arabjc.2018.07.011 Google Scholar
  17. 17.
    M. Pandiri, R. Velchuri, R. Gundeboina, V. Muga, A facile in-situ hydrothermal route to construct a well-aligned β-Ag2MoO4/g-C3N4 heterojunction with enhanced visible light photodegradation: mechanistic views. J. Photochem. Photob. A.: Chem. 360, 231–241 (2018)Google Scholar
  18. 18.
    A.F. Gouveia, J.C. Sczancoski, M.M. Ferrer, A.S. Lima, M.R.M.C. Santos, M. Siu Li, R.S. Santos, E. Longo, L.S. Cavalcante, Experimental and theoretical investigations of electronic structure and photoluminescence properties of β-Ag2MoO4 microcrystals. Inorg. Chem. 53, 5589–5599 (2014)Google Scholar
  19. 19.
    Z.Q. Li, X.T. Chen, Z.L. Xue, Microwave-assisted hydrothermal synthesis of cube-like Ag–Ag2MoO4 with visible-light photocatalytic activity. Sci. China Chem. 56, 443–450 (2013)Google Scholar
  20. 20.
    Y.V.B. De Santana, J.E.C. Gomes, L. Matos, G.H. Cruvinel, A. Perrin, C. Perrin, J. Andrès, J.A. Varela, E. Longo, Silver molybdate and silver tungstate nanocomposites with enhanced photoluminescence. Nanomater. Nanotechnol. 4, 22-1–22-11 (2014)Google Scholar
  21. 21.
    M.D.P. Silva, R.F. Gonçalves, I.C. Nogueira, V.M. Longo, L. Mondoni, M.G. Moron, Y.V. Santana, E. Longo, Microwave-assisted hydrothermal synthesis of Ag2(W1−xMox)O4 heterostructures: nucleation of Ag, morphology, and photoluminescence properties. Spectrochim. Acta Part A. 153, 428–435 (2016)Google Scholar
  22. 22.
    J. Andrés, M.M. Ferrer, L. Gracia, A. Beltran, V.M. Longo, G.H. Cruvinel, R.L. Tranquilin, E. Longo, A combined experimental and theoretical study on the formation of ag filaments on β-Ag2MoO4 induced by electron irradiation. Part. Part. Syst. Charact. 32, 646–651 (2015)Google Scholar
  23. 23.
    C.A. Oliveira, D.P. Volanti, A.E. Nogueira, C.A. Zamperini, C.E. Vergani, E. Longo, Well-designed β-Ag2MoO4 crystals with photocatalytic and antibacterial activity. Mater. Des. 115, 73–81 (2017)Google Scholar
  24. 24.
    C. Bréchignac, P. Cahuzac, N. Kebaili, A. Lando, A. Masson, M. Schmidt, Synthesis of silver molybdate clusters driven by laser-annealing. J. Chem. Phys. 121, 9617–9622 (2004)Google Scholar
  25. 25.
    J. Zhang, Z. Ma, Flower-like Ag2MoO4/Bi2MoO6 heterojunctions with enhanced photocatalytic activity under visible light irradiation. J. Taiwan Inst. Chem. Eng. 71, 156–164 (2017)Google Scholar
  26. 26.
    Y. Xie, Y. Dai, X. Yuan, L. Jiang, L. Zhou, Z. Wu, J. Zhang, H. Wang, T. Xiong, Insight on the plasmonic Z-scheme mechanism underlying the highly efficient photocatalytic activity of silver molybdate/silver vanadate composite in rhodamine B degradation. J. Coll. Interf. Sci. 530, 493–504 (2018)Google Scholar
  27. 27.
    W. Cao, Y. An, L. Chen, Z. Qi, Visible-light-driven Ag2MoO4/Ag3PO4 composites with enhanced photocatalytic activity. J. Alloys Compd. 701, 350–357 (2017)Google Scholar
  28. 28.
    J. Zhang, Y. Lu, J. Liu, H. Jiang, Mosaic structure effect and superior catalytic performance of AgBr/Ag2MoO4 composite materials. RSC Adv. 6, 94771–94779 (2016)Google Scholar
  29. 29.
    S.K. Gupta, P. Ghosh, K. Sudarshan, R. Gupta, P.K. Pujari, R. Kadam, Multifunctional pure and Eu3+ doped β-Ag2MoO4: photoluminescence, energy transfer dynamics and defect induced properties. Dalton Trans. 44, 19097–19110 (2015)Google Scholar
  30. 30.
    M.T. Fabbro, C. Saliby, L.R. Rios, F.A. La Porta, L. Gracia, M.S. Li, J. Andrés, L.P.S. Santos, E. Longo, Identifying and rationalizing the morphological, structural, and optical properties of β-Ag2MoO4 microcrystals, and the formation process of Ag nanoparticles on their surfaces: combining experimental data and first-principles calculations. Sci. Technol. Adv. Mater. 16, 065002–065011 (2015)Google Scholar
  31. 31.
    A. Chandra Bose, R. Dhanabal, S. Velmathi, High-efficiency new visible light-driven Ag2MoO4–Ag3PO4 composite photocatalyst towards degradation of industrial dyes. Catal. Sci. Technol. 6, 8449–8463 (2016)Google Scholar
  32. 32.
    J.V.B. Moura, T.S. Freitas, R.P. Cruz, R.L.S. Pereira, A.R.P. Silva, A.T.L. Santos, J.H. da Silva, C. Luz-Lima, P.T.C. Freire, H.D.M. Coutinho, β-Ag2MoO4 microcrystals: characterization, antibacterial properties and modulation analysis of antibiotic activity. Biomed. Pharmacother. 86, 242–247 (2017)Google Scholar
  33. 33.
    M.T. Fabbro, C.C. Foggi, L.P.S. Santos, L. Gracia, A. Perrin, C. Perrin, C.E. Vergani, A.L. Machado, J. Andrés, E. Cordoncillo, E. Longo, Synthesis, antifungal evaluation and optical properties of silver molybdate microcrystals in different solvents: a combined experimental and theoretical study. Dalton Trans. 45, 10736–10743 (2016)Google Scholar
  34. 34.
    E.Y. Liu, W.Z. Wang, Y.M. Gao, J.H. Jia, Tribological properties of adaptive Ni-based composites with addition of lubricious Ag2MoO4 at elevated temperatures. Tribol. Lett. 47, 21–30 (2012)Google Scholar
  35. 35.
    D. Zhou, W.B. Li, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, Z.X. Yue, X. Yao, Sintering behavior and dielectric properties of ultra-low temperature fired silver molybdate ceramics. J. Am. Ceram. Soc. 97, 3597–3601 (2014)Google Scholar
  36. 36.
    M. Wu, H. Lv, T. Wang, Z. Ao, H. Sun, C. Wang, T. Na, S. Wang, Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants. Catal. Today 315, 205–212 (2018)Google Scholar
  37. 37.
    R.W.G. Wyckoff, The crystal structure of silver molybdate. J. Am. Chem. Soc. 44, 1994–1998 (1922)Google Scholar
  38. 38.
    P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Ag/AgBr/WO3.3H2O: visible-light photocatalyst for bacteria destruction. Inorg. Chem. 48, 10697–10702 (2009)Google Scholar
  39. 39.
    J.V. Kumar, R. Karthik, S.M. Chen, V. Muthuraj, C. Karuppiah, Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2. Sci. Rep. 6, 34149–34161 (2016)Google Scholar
  40. 40.
    W.H. Bragg, W.L. Bragg, The reflexion of X-rays by crystals. Proc. R. Soc. Lond. A. 88, 428–438 (1913)Google Scholar
  41. 41.
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)Google Scholar
  42. 42.
    M. Bortolotti, L. Lutterotti, I. Lonardelli, ReX: a computer program for structural analysis using powder diffraction data. J. Appl. Cryst. 42, 538–539 (2009)Google Scholar
  43. 43.
    H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967)Google Scholar
  44. 44.
    L.W. Finger, D.E. Cox, A.P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Cryst. 27, 892–900 (1994)Google Scholar
  45. 45.
    B.H. Toby, Rfactors in Rietveld analysis: How good is good enough ? Powder Diffr. 21, 67–70 (2006)Google Scholar
  46. 46.
    D.L. Bish, J.E. Post, Quantitative mineralogical analysis using the Rietvetd full-pattern fitting method. Am. Mineral. 78, 932–940 (1993)Google Scholar
  47. 47.
    K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008)Google Scholar
  48. 48.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)Google Scholar
  49. 49.
    J. Donohue, W. Shand, The determination of the interatomic distances in silver molybdate, Ag2MoO4. J. Am. Chem. Soc. 69, 222–223 (1947)Google Scholar
  50. 50.
    D. Xu, B. Cheng, J. Zhang, W. Wang, J. Yu, W. Ho, Photocatalytic activity of Ag2MO4 (M=Cr, Mo, W) photocatalysts. J. Mater. Chem. A. 3, 20153–20166 (2015)Google Scholar
  51. 51.
    A. Beltrán, L. Gracia, E. Longo, J. Andrés, First-principles study of pressure-induced phase transitions and electronic properties of Ag2MoO4. J. Phys. Chem. C 118, 3724–3732 (2014)Google Scholar
  52. 52.
    J.V.B. Moura, J.G. da Silva Filho, P.T.C. Freire, C. Luz-Lima, G.S. Pinheiro, B.C. Viana, J. Mendes Filho, A.G. Souza-Filho, G.D. Saraiva, Phonon properties of β-Ag2MoO4: Raman spectroscopy and ab initio calculations. Vib. Spectrosc. 83, 97–102 (2016)Google Scholar
  53. 53.
    D.P. Singh, B. Sirota, S. Talpatra, P. Kohli, C. Rebholz, S. M. Aouadi, Broom-like and flower-like heterostructures of silver molybdate through pH controlled self assembly. J. Nanopart. Res. 14, 781–791 (2012)Google Scholar
  54. 54.
    E. Liu, Y.M. Gao, J. Jia, Y. Bia, Friction and wear behaviors of Ni-based composites containing graphite/Ag2MoO4 lubricants. Tribol. Lett. 50, 313–322 (2012)Google Scholar
  55. 55.
    S.M. Pourmortazavi, M. Taghdiri, N. Samimi, M. Rahimi-Nasrabadi, Eggshell bioactive membrane assisted synthesis of barium tungstate nanoparticles. Mater. Lett. 121, 5–7 (2014)Google Scholar
  56. 56.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, Facile chemical synthesis and structure characterization of copper molybdate nanoparticles. J. Mol. Struct. 1083, 229–235 (2015)Google Scholar
  57. 57.
    C.H.B. Ng, W.Y. Fan, C. Origami, Preparation of β–Ag2MoO4 concave and convex crystals with high-index facets. ChemNanoMat. 3, 178–182 (2017)Google Scholar
  58. 58.
    H. Jiang, JiK. Liu, J.D. Wang, Y. Lu, X.H. Yang, Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route. CrystEngComm. 17, 5511–5521 (2015)Google Scholar
  59. 59.
    D. Tanasic, A. Rathner, J.P. Kollender, P. Rathner, N. Müller, K.C. Zelenka, A.W. Hassel, C.C. Mardare, Silver-, calcium-, and copper molybdate compounds: preparation, antibacterial activity, and mechanisms, Biointerph. 12, 05G607-1–05G607-13 (2017)Google Scholar
  60. 60.
    P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem. Eur. J. 16, 538–544 (2010)Google Scholar
  61. 61.
    W. Wei, Z.F. Jiang, J.J. Jing, X.M. Lv, J.M. Xie, Smart strategy to synthesis silver-based heterogeneous photocatalysts grown from molybdenum oxide precursor. Micro Nano Lett. 12, 978–981 (2017)Google Scholar
  62. 62.
    S.S. Shapiro, M.B. Wilk, An analysis of variance test for normality (complete samples). Biometrika. 52, 591–611 (1965)Google Scholar
  63. 63.
    P. Kubelka, F. Munk-Aussi, Ein Beitrag Zur Optik Der Farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  64. 64.
    A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fís. S. 53, 18–22 (2007)Google Scholar
  65. 65.
    R.A. Smith, Semiconductors, 2nd. (Cambridge University Press, London, 1978), pp. 1–535Google Scholar
  66. 66.
    R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. Europhys. Lett. 83, 37002–37006 (2008)Google Scholar
  67. 67.
    A.P.A. Marques, F.C. Picon, D.M.A. Melo, P.S. Pizani, E.R. Leite, J.A. Varela, E. Longo, Effect of the order and disorder of BaMoO4 powders in photoluminescent properties. J. Fluoresc. 18, 51–59 (2008)Google Scholar
  68. 68.
    M. Grundmann, Electronic defect states, the physics of semiconductors. Cap. 7 1, 203–253 (2016)Google Scholar
  69. 69.
    F.A. Kröger, H.J. Vink, Relations between the concentrations of imperfections in solids. J. Phys. Chem. Solids 5, 208–223 (1958)Google Scholar
  70. 70.
    V.M. Longo, A.T. de Figueiredo, A.B. Campos, J.W.M. Espinosa, A.C. Hernandes, C.A. Taft, J.R. Sambrano, J.A. Varela, E. Longo, Different origins of green-light photoluminescence emission in structurally ordered and disordered powders of calcium molybdate. J. Phys. Chem. A 112, 8920–8928 (2008)Google Scholar
  71. 71.
    L.S. Cavalcante, M.A.P. Almeida, W. Avansi Jr., R.L. Tranquilin, E. Longo, N.C. Batista, V.R. Mastelaro, M.Siu Li, Cluster coordination and photoluminescence properties of α–Ag2WO4 microcrystals. Inorg. Chem. 51, 10675–10687 (2012)Google Scholar
  72. 72.
    Y.Y. Bai, Y. Lu, J.K. Liu, An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4–AgBr composite. J. Hazard. Mater. 307, 26–35 (2016)Google Scholar
  73. 73.
    X. Qin, X. Sun, H. Huang, Y. Bai, Y. Wang, H. Luo, B. Yao, X. Zhang, X. Su, Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals. Biotechnol. Biofuels 10, 103–113 (2017)Google Scholar
  74. 74.
    N.M. Aljamali, Review in azo compounds and its biological activity. Biochem Anal Biochem. 4, 169–172 (2015)Google Scholar
  75. 75.
    V. Singh, J. Singh, P. Srivastava, Synthesis and characterization of Acacia gum–Fe0-Np–silica nanocomposite: an efcient fenton-like catalyst for the degradation of remazol brilliant violet dye. Appl. Nanosci. 8, 793–810 (2018)Google Scholar
  76. 76.
    P.D. Mines, J. Byun, Y. Hwang, H.A. Patel, H.R. Andersen, C.T. Yavuz, Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal. J. Mater. Chem. A. 4, 632–639 (2016)Google Scholar
  77. 77.
    M.Q. Yang, Y. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Visible-light-driven oxidation of primary C–H bonds over CdS with dual co-catalysts graphene and TiO2. Sci. Rep. 3, 3314–3320 (2013)Google Scholar
  78. 78.
    G.A.C. Ribeiro, D.S.A. Silva, C.C. dos Santos, A.P. Vieira, C.W.B. Bezerra, A.A. Tanaka, S.A.A. Santana, Removal of remazol brilliant violet textile dye by adsorption using rice hulls. Polímeros. 27, 16–26 (2017)Google Scholar
  79. 79.
    Y. Zhao, C. Li, X. Liu, F. Gu, Highly enhanced degradation of dye with well-dispersed TiO2 nanoparticles under visible irradiation. J. Alloys Compd. 440, 281–286 (2007)Google Scholar
  80. 80.
    S. Popli, U.D. Patel, Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int. J. Environ. Sci. Technol. 12, 405–420 (2015)Google Scholar
  81. 81.
    S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology. 29, 342001–342030 (2018)Google Scholar
  82. 82.
    P.C.S. Bezerra, R.P. Cavalcante, A. Garcia, H. Wender, M.A.U. Martines, G.A. Casagrande, J. Giménez, P. Marco, S.C. Oliveira, A. Machulek Jr., Synthesis, Characterization, and photocatalytic activity of pure and N-, B-, or Ag-doped TiO2. J. Braz. Chem. Soc. 28, 1788–1802 (2017)Google Scholar
  83. 83.
    S. Nahar, M.F.M. Zain, A.A.H. Kadhum, H.A. Hasan, M.R. Hasan, Advances in photocatalytic CO2 reduction with water: a review. Mater. 10, 629–654 (2017)Google Scholar
  84. 84.
    D. Xu, B. Cheng, S. Cao, J. Yu, Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl. Catal. B. Environ. 164, 380–388 (2015)Google Scholar
  85. 85.
    C. Zheng, H. Yang, Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. J. Mater. Sci. Mater. Electron. 29, 9291–9300 (2018)Google Scholar
  86. 86.
    F. Chen, H. Yan, W. Lou, P. Wang, H. You, Selective adsorption of thiocyanate anions on Ag-modified g-C3N4 for enhanced photocatalytic hydrogen evolution. Chin. J. Catal. 38, 1990–1998 (2017)Google Scholar
  87. 87.
    L. Tian, X. Xian, X. Cui, H. Tang, X. Yang, Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting. Appl. Surf. Sci. 430, 301–308 (2018)Google Scholar
  88. 88.
    X. Cui, L. Tian, X. Xian, H. Tang, X. Yang, Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene. Appl. Surf. Sci. 430, 108–115 (2018)Google Scholar
  89. 89.
    D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B. Environ. 231, 368–380 (2018)Google Scholar
  90. 90.
    Z. Zhu, Y. Han, C. Chen, Z. Ding, J. Long, Y. Hou, Reduced graphene oxide-CdS nanorods decorated with Ag nanoparticles for efficient photocatalytic reduction CO2 under visible light. ChemCatChem. 10, 1627–1634 (2018)Google Scholar
  91. 91.
    W.S. Pereira, J.C. Sczancoski, Y.N.C. Calderon, V.R. Mastelaro, G. Botelho, T.R. Machado, E.R. Leite, E. Longo, Influence of Cu substitution on the structural ordering, photocatalytic activity and photoluminescence emission of Ag3−2xCuxPO4 powders. Appl. Surf. Sci. 440, 61–72 (2018)Google Scholar
  92. 92.
    L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida, A.C. Rabelo, I.C. Nogueira, N.C. Batista, J.A. Varela, M.R.M.C. Santos, E. Longo, M.Siu Li, Structural refinement, growth process, photoluminescence and photocatalytic properties of (Ba1–xPr2x/3)WO4 crystals synthesized by the coprecipitation method. RSC Adv. 2, 6438–6454 (2012)Google Scholar
  93. 93.
    L.S. Cavalcante, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, M.O. Orlandi, Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Adv. Powder Technol. 24, 344–353 (2013)Google Scholar
  94. 94.
    R.A. Roca, J.C. Sczancoski, I.C. Nogueira, M.T. Fabbro, H.C. Alves, L. Gracia, L.P.S. Santos, C.P. de Sousa, J. Andrés, G.E. Luz Jr., E. Longo, L.S. Cavalcante, Facet-dependent photocatalytic and antibacterial properties of α–Ag2WO4 crystals: combining experimental data and theoretical insights. Catal. Sci. Technol. 5, 4091–4107 (2015)Google Scholar
  95. 95.
    P. Li, X. Zhao, Y. Li, H. Sun, L. Sun, X. Cheng, X. Hao, W. Fan, Effects of surface chemistry on the morphology transformation of ZnWO4 nanocrystals: investigated from experiment and theoretical calculations. CrystEngComm. 14, 920–928 (2012)Google Scholar
  96. 96.
    N.G. Macedo, A.F. Gouveia, R.A. Roca, M. Assis, L. Gracia, J. Andres, Surfactant-mediated morphology and photocatalytic activity of α–Ag2WO4 material. J. Phys. Chem. C 122, 8667–8679 (2018)Google Scholar
  97. 97.
    M. Rahimi-Nasrabadi, Strontium molybdate nanostructures: synthesis of different shapes through a new approach and its photocatalyst application. J. Mater. Sci. Mater Electron 28, 2200–2205 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. W. R. Coimbra
    • 1
  • F. S. Cunha
    • 2
  • J. C. Sczancoski
    • 3
  • J. F. S. de Carvalho
    • 1
  • F. R. C. de Macêdo
    • 1
  • L. S. Cavalcante
    • 1
    • 2
    Email author
  1. 1.Programa de Pós-Graduação em Ciência dos Materiais-PPGCMUniversidade Federal do PiauíTeresinaBrazil
  2. 2.PPGQ-GERATECUniversidade Estadual do PiauíTeresinaBrazil
  3. 3.CDMF-UFSCarUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations