One-step introduction of metallic Bi and non-metallic C in Bi2WO6 with enhanced photocatalytic activity

  • Mengjun Liang
  • Zhiyuan Yang
  • Yun Yang
  • Ying Mei
  • Haoran Zhou
  • Shuijin YangEmail author


One-step introduction of metallic Bi, non-metallic C into Bi2WO6 was successfully prepared via a facile hydrothermal synthetic route. The obtained materials were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy (XPS), nitrogen absorption–desorption isotherms, photoluminescence spectroscopy, photocurrent responses, electrochemical impedance spectroscopy (EIS), electron paramagnetic resonance (EPR), UV–vis diffuse reflectance spectra (DRS). As a result, C/Bi codecorated Bi2WO6 shows profoundly photocatalytic activity in comparison with undoped Bi2WO6 for decomposition of various industrial pollutants, including phenol, ciprofloxacin, bisphenol A, rhodamine B, and methyl orange under visible light (λ ≥ 420 nm). The enhanced photocatalytic properties may be ascribed to the fact that the synergistic effects of the SPR effect of Bi metal and the hybrid orbital constructed by C doping not only enhance the absorption of visible light but also accelerate the separation and migration of photo-generated carriers. Moreover, on the basis of the radical species trapping experiments, EPR analyses, DRS technique and Mott–Schottky plots, we proposed a simple photocatalytic mechanism.



This work was kindly supported the National Natural Science Foundation of China (21171053), National Undergraduate Training Programs for Innovation and Entrepreneurship (201710513012) and Graduate Student Innovation Research Foundation of Hubei Normal University (20170108).

Supplementary material

10854_2018_400_MOESM1_ESM.doc (504 kb)
Supplementary material 1 (DOC 503 KB)


  1. 1.
    K. Iwashina, A. Iwase, Y.H. Ng, R. Amal, A. Kudo, Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 137, 604–607 (2015)CrossRefGoogle Scholar
  2. 2.
    Y.F. Wang, H.L. Wang, A.L. Xu, Z.W. Song, Facile synthesis of Ag3PO4 modified with GQDs composites with enhanced visible-light photocatalytic activity. J. Mater. Sci. 29, 16691–16701 (2018)Google Scholar
  3. 3.
    L. Zhang, X.L. Fu, S.G. Meng, X.L. Jiang, J.H. Wang, S.F. Chen, Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H2 production under visible light. J. Mater. Chem. A 3, 23732–23742 (2015)CrossRefGoogle Scholar
  4. 4.
    Y.L. Zheng, W.Z. Wang, D. Jiang, L. Zhang, X.M. Li, Z. Wang, Ultrathin mesoporous Co3O4 nanosheets with excellent photo-/thermo-catalytic activity. J. Mater. Chem. A 4, 105–112 (2016)CrossRefGoogle Scholar
  5. 5.
    D.L. Jiang, T.Y. Wang, Q. Xu, D. Li, S.C. Meng, M. Chen, Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunctionphotocatalysts with significantly enhanced photocatalytic activitytowards the photodegradation of tetracycline. Appl. Catal. B 201, 617–628 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Zhang, D. Chen, X. Jiao, Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 110, 2668–2673 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Iwase, Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution. J. Mater. Chem. 20, 7536–7542 (2010)CrossRefGoogle Scholar
  8. 8.
    V. Hameed, T. Gombac, M. Montini, P. Graziani, Fornasiero, Synthesis, characterization and photocatalytic activity of NiO–Bi2O3 nanocomposites. Chem. Phys. Lett. 472, 212–216 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Abdul, M. Tiziano, G. Valentina, F. Paolo, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4−x nanocomposite. J. Am. Chem. Soc. 130, 9658–9659 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Peng, C.K. Chan, S. Meister, X.F. Zhang, Y. Cui, Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem. Mater. 21, 247–252 (2009)CrossRefGoogle Scholar
  11. 11.
    K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006)CrossRefGoogle Scholar
  12. 12.
    G.H. Tian, Y.J. Chen, W. Zhou, K. Pan, Y.Z. Dong, C.G. Tian, H.G. Fu, Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photo catalysts. J. Mater. Chem. 21, 887–892 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Lin, D. Liu, X.Y. Guo, N. Sun, S. Zhao, L.M. Chang, H.J. Zhai, Q.W. Wang, Fabrication and efficient visible light-induced photocatalytic activity of Bi2MoO6/BiPO4 composite. J. Phys. Chem. Solids 76, 170–177 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Fu, C. Pan, W. Yao, Y. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 22432–22439 (2005)CrossRefGoogle Scholar
  15. 15.
    S.F. Chen, W.M. Tang, Y.F. Hu, X.L. Fu, The preparation and characterization of composite bismuth tungsten oxide with enhanced visible light photocatalytic activity. CrystEngComm 15, 7943–7950 (2013)CrossRefGoogle Scholar
  16. 16.
    Q.S. Wu, Y. Cui, L.M. Yang, G.Y. Zhang, D.Z. Gao, Facile in-situ photocatalysis of Ag/Bi2WO6 heterostructure with obviously enhanced performance. Sep. Purif. Technol. 142, 168–175 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.F. Zhang, Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005)CrossRefGoogle Scholar
  18. 18.
    J. Ren, W.Z. Wang, S.M. Sun, L. Zhang, J. Chang, Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl. Catal. B 92, 50–55 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Xia, J. Di, S. Yin, H. Xu, J. Zhang, Y. Xu, L. Xu, H. Li, M. Ji, Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity. RSC Adv. 4, 82–90 (2014)CrossRefGoogle Scholar
  20. 20.
    N. Tian, Y. Zhang, H. Huang, Y. He, Y. Guo, Influences of Gd substitution on the crystal structure and visible-light-driven photocatalytic performance of Bi2WO6. J. Phys. Chem. C 118, 15640–15648 (2014)CrossRefGoogle Scholar
  21. 21.
    C.S. Pan, Y.F. Zhu, New type of BiPO(4) oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol. 44, 5570–5574 (2010)CrossRefGoogle Scholar
  22. 22.
    M.H. Zhou, J.G. Yu, B. Cheng, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. 137, 1838–1847 (2006)CrossRefGoogle Scholar
  23. 23.
    F. Dong, H.Q. Wang, Z.B. Wu, J.F. Qiu, Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+ surface modification J. Colloid. Interf. Sci. 343, 200–208 (2010)CrossRefGoogle Scholar
  24. 24.
    T. Liu, L. Sua, J.Y. Wu, Q.J. Liang, J. Huang, W.H. Chen, Hou, N-doped Na2Ti6O13@TiO2 core–shell nanobelts with exposed {1 0 1}anatase facets and enhanced visible light photocatalytic performance. Appl. Catal. B 170, 17–24 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Sarina, E.R. Waclawik, H. Zhu, Facile insertion of CO2 into metal-phenoxide bonds. Green Chem. 15, 1814–1833 (2013)CrossRefGoogle Scholar
  26. 26.
    Z.J. Zhao, Z.Y. Cai, L.Q. Yang, Z.J. Hu, Y.L. Zhang, X.J. Peng, Q.Q. Wang, X.L. Yuan, G.H. Li, Ternary magnetic Ag–Cu/Fe3O4/rGO composite as an efficient photocatalyst for degradation of malachite green. J. Mater. Sci. 29, 17743–17749 (2018)Google Scholar
  27. 27.
    T. Bora, D. Zoepfl, J. Dutta, Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Sci. Rep. 6, 26913–26923 (2016)CrossRefGoogle Scholar
  28. 28.
    F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, Z. Wu, A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 50, 10386–10389 (2014)CrossRefGoogle Scholar
  29. 29.
    J.J. Hu, G.Q. Xu, J.W. Wang, J. Lv, X.Y. Zhang, Z.X. Zheng, T. Xie, Y.C. Wu, Photocatalytic properties of Bi/BiOCl heterojunctions synthesized using an in situ reduction method. New J. Chem. 38, 4913–4921 (2014)CrossRefGoogle Scholar
  30. 30.
    X.F. Qian, D.T. Yue, Z.Y. Tian, M. Reng, Y. Zhu, M. Kan, T.Y. Zhang, Y.X. Zhao, Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl. Catal. B 193, 16–21 (2016)CrossRefGoogle Scholar
  31. 31.
    P.R. Chen, A. Khetan, F.K. Yang, V. Migunov, P. Weide, S.P. Stürmer, P.H. Guo, K. Kahler, W. Xia, J. Mayer, H. Pitsch, U. Simon, M. Muhler, Experimental and theoretical understanding of nitrogen doping-induced strong metal-support interactions in Pd/TiO2 catalysts for nitrobenzene hydrogenation. ACS Catal. 7, 1197–1206 (2016)CrossRefGoogle Scholar
  32. 32.
    K.S. Ranjith, T. Uyar, Rational synthesis of Na and S co-catalyst TiO2-based nanofibers: presence of surface-layered TiS3 shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis. J. Mater. Chem. A 5, 14206–14219 (2017)CrossRefGoogle Scholar
  33. 33.
    J.Q. Zhang, Z.P. Xing, J.Y. Cui, Z.Z. Li, S.Y. Tan, J.W. Yin, J.L. Zou, Q. Zhu, W. Zhou, C,N co-doped porous TiO2 hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Trans. 47, 4877–4884 (2018)CrossRefGoogle Scholar
  34. 34.
    C.L. Yu, J.C. Yu, A simple way to prepare C–N-codoped TiO2 photocatalyst with visible-light activity. Catal. Lett. 129, 462–470 (2009)CrossRefGoogle Scholar
  35. 35.
    Q. Hao, R.T. Wang, H.J. Lu, C.A. Xie, W.H. Ao, D.M. Chen, C. Ma, W.Q. Yao, Y.F. Zhu, One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity. Appl. Catal. B 219, 63–72 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Li, Q.G. Gu, Zhong, Synthesis and crystal structure of dinuclear bismuth(III) complex with ethylenediaminetetraacetate. J. Synth. Cryst. 12, 2726–2731 (2013)Google Scholar
  37. 37.
    Z.Y. Yang, L. Chen, Y. Yang, J.J. Wang, Y.K. Huang, X.X. Liu, S.J. Yang, Constructing TiO2 decorated Bi2WO6 architectures with enhanced visible-light-driven photocatalytic activity. Semicond. Sci. Tech. 32, 065008 (2017)CrossRefGoogle Scholar
  38. 38.
    Y.K. Huang, S.F. Kang, Y. Yang, H.F. Qin, Z.J. Ni, S.J. Yang, X. Li, Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl. Catal. B 196, 89–99 (2016)CrossRefGoogle Scholar
  39. 39.
    D.H. Ding, C. Liu, Y.F. Ji, Q. Yang, L.L. Chen, C.L. Jiang, T.M. Cai, Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway. Chem. Eng. J. 308, 330–339 (2017)CrossRefGoogle Scholar
  40. 40.
    X.A. Dong, W.D. Zhang, Y.J. Sun, J.Y. Li, W.L. Cen, Z.H. Cui, H.W. Huang, F. Dong, Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. J. Catal. 357, 41–50 (2018)CrossRefGoogle Scholar
  41. 41.
    S.X. Yu, H.W. Huang, F. Dong, M. Li, N. Tian, T.R. Zhang, Y.H. Zhang, Synchronously achieving plasmonic Bi metal deposition and I-doping by utilizing BiOIO3 as the self-sacrificing template for high performance multifunctional applications. ACS Appl. Mater. Interf. 7, 27925–27933 (2015)CrossRefGoogle Scholar
  42. 42.
    Y.J. Sun, Z.W. Zhao, W.D. Zhang, C.F. Gao, Y.X. Zhang, F. Dong, Plasmonic Bi metal as cocatalyst and photocatalyst: the case of Bi/(BiO)2CO3 and Bi particles. J. Colloid and Interf. Sci. 485, 1–10 (2017)CrossRefGoogle Scholar
  43. 43.
    R. Nyholm, A. Berndtsson, N. Mhrtensson, Core level binding energies for the elements Hf to Bi (Ζ = 72–83). J. Phys. C 13, 1091–1096 (1980)CrossRefGoogle Scholar
  44. 44.
    D.J. Wang, L. Guo, Y.Z. Zhen, L.L. Yue, G.L. Xue, F. Fu, AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J. Mater. Chem. A 2, 11716–11727 (2014)CrossRefGoogle Scholar
  45. 45.
    Y.G. Zhou, Y.F. Zhang, M.S. Lin, J.L. Long, Z.Z. Zhang, H.X. Lin, J.C.S. Wu, X.X. Wang, Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 6, 8340–8348 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Gnayem, Y. Sasson, Nanostructured 3D sunflower-like bismuth doped BiOClxBr1−x solid solutions with enhanced visible light photocatalytic activity as a remarkably efficient technology for water purification. J. Phys. Chem. C 119, 19201–19209 (2015)CrossRefGoogle Scholar
  47. 47.
    C.H. Wu, H.W. Chang, J.M. Chern, Basic dye decomposition kinetics in a photocatalytic slurry reactor. J. Hazard. Mater. 137, 336–343 (2006)CrossRefGoogle Scholar
  48. 48.
    Y.C. Huang, W.J. Fan, B. Long, H.B. Li, F.Y. Zhao, Z.L. Liu, Y.X. Tong, H.B. Ji, Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Appl. Catal. B 185, 68–76 (2016)CrossRefGoogle Scholar
  49. 49.
    S.K. Lee, A. Mills, C.O. Rourke, Action spectra in semiconductor photocatalysis. Chem. Soc. Rev. 46, 4877–4894 (2017)CrossRefGoogle Scholar
  50. 50.
    Y.F. Cai, S.Y. Chang, Y.F. Liu, Y. Shen, F.F. Li, L.Y. Li, S.S. Zhu, X.Y. Zheng, Hydrothermal-photoreduction synthesis of novel Ag@AgBr/BiVO4 plasmonic heterojunction photocatalysts with enhanced activity under white light emitting diode (wLED) irradiation. J. Mater. Sci. 29, 17602–17611 (2018)Google Scholar
  51. 51.
    R.Y. Wu, H.B. Song, N. Luo, G.J. Ji, Hydrothermal preparation of 3D flower-like BiPO4/Bi2WO6 microsphere with enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 524, 350–359 (2018)CrossRefGoogle Scholar
  52. 52.
    M.J. Liang, Z.Y. Yang, Y. Mei, H.R. Zhou, S.J. Yang, Dye-sensitized-assisted with high photocatalytic activity of TiO2/Bi4V2O11. Nano 13, 1850028 (2018)CrossRefGoogle Scholar
  53. 53.
    Y. Gong, X. Zhao, H. Zhang, B. Yang, K. Xiao, T. Guo, J.J. Zhang, H.X. Shao, Y.B. Wang, G. Yu, MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Appl. Catal. B 233, 35–45 (2018)CrossRefGoogle Scholar
  54. 54.
    L. Tang, C.Y. Feng, Y.C. Deng, G.M. Zeng, J.J. Wang, Y.N. Liu, H.P. Feng, J.J. Wang, Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism. Appl. Catal. B 230, 102–114 (2018)CrossRefGoogle Scholar
  55. 55.
    Q.Q. Meng, Y.S. Zhou, G. Chen, Y.D. Hu, C.D. Lv, L.S. Qiang, W.N. Xing, Integrating both homojunction and heterojunction in QDs self-decorated Bi2MoO6/BCN composites to achieve an efficient photocatalyst for Cr(VI) reduction. Chem. Eng. J. 334, 334–343 (2018)CrossRefGoogle Scholar
  56. 56.
    C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005)CrossRefGoogle Scholar
  57. 57.
    Q.Y. Dong, Y.J. Li, W.K. Sun, Ho, Noble metal-like behavior of plasmonic Bi particles as a Cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal. 4, 4341–4350 (2014)CrossRefGoogle Scholar
  58. 58.
    S.Y. Lu, Y.N. Yu, S.J. Bao, S.H. Liao, In situ synthesis and excellent photocatalytic activity of tiny Bi decorated bismuth tungstate nanorods. RSC Adv. 5, 85500–85505 (2015)CrossRefGoogle Scholar
  59. 59.
    S.X. Yu, Y.H. Zhang, M. Li, X. Du, H.W. Huang, Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity. Appl. Surf. Sci. 391, 491–498 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mengjun Liang
    • 1
  • Zhiyuan Yang
    • 1
  • Yun Yang
    • 1
  • Ying Mei
    • 1
  • Haoran Zhou
    • 1
  • Shuijin Yang
    • 1
    Email author
  1. 1.Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal UniversityHuangshiChina

Personalised recommendations