Preparation and characterization of BaCo0.5Nb0.5O3-based new high temperature NTC sensitive ceramics

  • Xvqiong LiEmail author
  • Ying Luo
  • Guohua Chen


A new type of high temperature NTC thermal sensitive ceramics BaCoxNbxTi(1−2x)O3 (BCNT) was synthesized via a solid-state reaction process. The as-prepared ceramics were obtained by sintering at 1300 °C for 1 h in air. According to the XRD and SEM analysis, BCNT form a solid solution with cubic phase, and the content of BaTiO3 (BT) has insignificant influence on the mean grain size of the ceramics. The BaCo0.5Nb0.5O3 (BCN) based materials show typical NTC effect in the whole temperature measuring range (25–500 °C). The room temperature resistivity (ρ25), thermal constant (B25/85) and activation energy (Ea) increase monotonously with the increase of BT content. The TG-DSC results show that there is no phase transition in the temperature range from 25 to 1000 °C, which indicate that the structure of the BCN-based ceramics is stable at high temperature.



The authors gratefully acknowledge the National Science Foundation of China (Grant No. 51462005) for providing the financial support.


  1. 1.
    F. Guan, H.M. Zhang, A.M. Chang, B. Zhao, J. Mater. Sci. 23, 9026–9030 (2012)Google Scholar
  2. 2.
    H. Zhang, A. Chang, C. Peng, Microelectron Eng. 88, 2934–2940 (2011)CrossRefGoogle Scholar
  3. 3.
    S.M. Hosseini, B. Ghanbari Shohany, N. Azad, A. Kompany, Int. J. Nanosci. 10, 479–486 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Bordeneuve, C. Tenailleau, S. Guillement-Fritsch, R. Smith, E. Suard, A. Rousset, Solid State Sci. 12, 379–386 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Feltz, W. Pölzl, J. Eur. Ceram. Soc. 20, 2353–2366 (2000)CrossRefGoogle Scholar
  6. 6.
    T. Tachiwaki, Y. Kunifusa, M. Yoshinaka, O. Yamaguchi, Int. J. Inorg. Mater. 3, 107–111 (2001)CrossRefGoogle Scholar
  7. 7.
    A. Kamlo Ngueteu, J. Bernard, C. Lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457–1463 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Dan, H. Zhang, Y.Y. Li, Y.L. Liu, Z.C. Li, J. Mater. Sci. 23, 1306–1312 (2012)Google Scholar
  9. 9.
    P. Ouyang, H. Zhang, X. Dan, Z.C. Li, J. Mater. Sci. 24, 3932–3939 (2013)Google Scholar
  10. 10.
    Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu, Z. Shao, J. Mater. Chem. 2, 9666–9674 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. Yang, Y. Zhang, W. Ding, J. Membr. Sci. 470, 197–204 (2014)CrossRefGoogle Scholar
  12. 12.
    Q. Zhou, T. Wei, Z. Li, D. An, X. Tong, z Ji, W. Wang, H. Lu, L. Sun, Z. Zhang, K. Xu, J. Alloys Compd. 627, 320–323 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Agarwal, H. Goswami, React. Kinet. Catal. Lett. 53, 441–449 (1994)CrossRefGoogle Scholar
  14. 14.
    F. Liang, J. Chen, Electrochem. Commun. 11, 1048–1051 (2009)CrossRefGoogle Scholar
  15. 15.
    B. Jiang, H. Cheng, L. Luo, X. Lu, J. Energy Chem. 23, 164–170 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Makoto, D. Kazunari, H. Michikazu, T. Takashi, Chem. Lett. 35, 1326–1327 (2006)CrossRefGoogle Scholar
  17. 17.
    Y.W. Zhang, Q. Li, P.J. Shen, Y. Liu, Z.B. Yang, W.Z. Ding, X.G. Liu, Int J Hydrog. Energy. 33, 3311–3319 (2008)CrossRefGoogle Scholar
  18. 18.
    P.J. Shen, X. Liu, H.H. Wang, W.Z. Ding, J. Phys. Chem. C 114, 22338–22345 (2010)CrossRefGoogle Scholar
  19. 19.
    Y.F. Chen, H.L. Zhao, D.Q. Teng, F.S. Li, X.G. Lu, W.Z. Ding, J. Membr. Sci. 322, 484–490 (2008)CrossRefGoogle Scholar
  20. 20.
    X. Yang, X. Han, T. He, Y. Du, ECS Trans. 78, 543–550 (2017)CrossRefGoogle Scholar
  21. 21.
    G.R. Zhang, Z.K. Liu, N. Zhu, W. Jiang, X.L. Dong, W.S. Jin, J. Membr. Sci. 405, 300–309 (2012)CrossRefGoogle Scholar
  22. 22.
    C.H. Lu, C.Y. Hu, C.H. Wu, Mater Lett. 61, 3959–3962 (2007)CrossRefGoogle Scholar
  23. 23.
    P. Fau, J.P. Bonino, J.J. Demai, J. Rousset. Appl Surf Sci. 65, 319–324 (1993)CrossRefGoogle Scholar
  24. 24.
    Z. Yang, C. Yang, C. Jin, M. Han, F. Chen, Eletrochem. Commun. 13, 882–885 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Luo, X.Q. Li, X.Y. Liu, C.L. Yuan, Mater. Lett. 93, 187–189 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Feltz, J. Eur. Ceram. Soc. 20, 2367–2376 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Precision Navigation Technology and ApplicationGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Research Center for Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  3. 3.Guangxi Key Laboratory of Super Hard Materials, Chinese National Engineering Research Center for Special Mineral MaterialsChina Nonferrous Metal (Guilin) Geology and Mining Co, LtdGuilinPeople’s Republic of China

Personalised recommendations