Preparation and characterization of BaCo0.5Nb0.5O3-based new high temperature NTC sensitive ceramics
- 21 Downloads
Abstract
A new type of high temperature NTC thermal sensitive ceramics BaCoxNbxTi(1−2x)O3 (BCNT) was synthesized via a solid-state reaction process. The as-prepared ceramics were obtained by sintering at 1300 °C for 1 h in air. According to the XRD and SEM analysis, BCNT form a solid solution with cubic phase, and the content of BaTiO3 (BT) has insignificant influence on the mean grain size of the ceramics. The BaCo0.5Nb0.5O3 (BCN) based materials show typical NTC effect in the whole temperature measuring range (25–500 °C). The room temperature resistivity (ρ25), thermal constant (B25/85) and activation energy (Ea) increase monotonously with the increase of BT content. The TG-DSC results show that there is no phase transition in the temperature range from 25 to 1000 °C, which indicate that the structure of the BCN-based ceramics is stable at high temperature.
Notes
Acknowledgements
The authors gratefully acknowledge the National Science Foundation of China (Grant No. 51462005) for providing the financial support.
References
- 1.F. Guan, H.M. Zhang, A.M. Chang, B. Zhao, J. Mater. Sci. 23, 9026–9030 (2012)Google Scholar
- 2.H. Zhang, A. Chang, C. Peng, Microelectron Eng. 88, 2934–2940 (2011)CrossRefGoogle Scholar
- 3.S.M. Hosseini, B. Ghanbari Shohany, N. Azad, A. Kompany, Int. J. Nanosci. 10, 479–486 (2011)CrossRefGoogle Scholar
- 4.H. Bordeneuve, C. Tenailleau, S. Guillement-Fritsch, R. Smith, E. Suard, A. Rousset, Solid State Sci. 12, 379–386 (2010)CrossRefGoogle Scholar
- 5.A. Feltz, W. Pölzl, J. Eur. Ceram. Soc. 20, 2353–2366 (2000)CrossRefGoogle Scholar
- 6.T. Tachiwaki, Y. Kunifusa, M. Yoshinaka, O. Yamaguchi, Int. J. Inorg. Mater. 3, 107–111 (2001)CrossRefGoogle Scholar
- 7.A. Kamlo Ngueteu, J. Bernard, C. Lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457–1463 (2011)CrossRefGoogle Scholar
- 8.X. Dan, H. Zhang, Y.Y. Li, Y.L. Liu, Z.C. Li, J. Mater. Sci. 23, 1306–1312 (2012)Google Scholar
- 9.P. Ouyang, H. Zhang, X. Dan, Z.C. Li, J. Mater. Sci. 24, 3932–3939 (2013)Google Scholar
- 10.Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu, Z. Shao, J. Mater. Chem. 2, 9666–9674 (2014)CrossRefGoogle Scholar
- 11.Z. Yang, Y. Zhang, W. Ding, J. Membr. Sci. 470, 197–204 (2014)CrossRefGoogle Scholar
- 12.Q. Zhou, T. Wei, Z. Li, D. An, X. Tong, z Ji, W. Wang, H. Lu, L. Sun, Z. Zhang, K. Xu, J. Alloys Compd. 627, 320–323 (2015)CrossRefGoogle Scholar
- 13.D. Agarwal, H. Goswami, React. Kinet. Catal. Lett. 53, 441–449 (1994)CrossRefGoogle Scholar
- 14.F. Liang, J. Chen, Electrochem. Commun. 11, 1048–1051 (2009)CrossRefGoogle Scholar
- 15.B. Jiang, H. Cheng, L. Luo, X. Lu, J. Energy Chem. 23, 164–170 (2014)CrossRefGoogle Scholar
- 16.H. Makoto, D. Kazunari, H. Michikazu, T. Takashi, Chem. Lett. 35, 1326–1327 (2006)CrossRefGoogle Scholar
- 17.Y.W. Zhang, Q. Li, P.J. Shen, Y. Liu, Z.B. Yang, W.Z. Ding, X.G. Liu, Int J Hydrog. Energy. 33, 3311–3319 (2008)CrossRefGoogle Scholar
- 18.P.J. Shen, X. Liu, H.H. Wang, W.Z. Ding, J. Phys. Chem. C 114, 22338–22345 (2010)CrossRefGoogle Scholar
- 19.Y.F. Chen, H.L. Zhao, D.Q. Teng, F.S. Li, X.G. Lu, W.Z. Ding, J. Membr. Sci. 322, 484–490 (2008)CrossRefGoogle Scholar
- 20.X. Yang, X. Han, T. He, Y. Du, ECS Trans. 78, 543–550 (2017)CrossRefGoogle Scholar
- 21.G.R. Zhang, Z.K. Liu, N. Zhu, W. Jiang, X.L. Dong, W.S. Jin, J. Membr. Sci. 405, 300–309 (2012)CrossRefGoogle Scholar
- 22.C.H. Lu, C.Y. Hu, C.H. Wu, Mater Lett. 61, 3959–3962 (2007)CrossRefGoogle Scholar
- 23.P. Fau, J.P. Bonino, J.J. Demai, J. Rousset. Appl Surf Sci. 65, 319–324 (1993)CrossRefGoogle Scholar
- 24.Z. Yang, C. Yang, C. Jin, M. Han, F. Chen, Eletrochem. Commun. 13, 882–885 (2011)CrossRefGoogle Scholar
- 25.Y. Luo, X.Q. Li, X.Y. Liu, C.L. Yuan, Mater. Lett. 93, 187–189 (2013)CrossRefGoogle Scholar
- 26.A. Feltz, J. Eur. Ceram. Soc. 20, 2367–2376 (2000)CrossRefGoogle Scholar