Advertisement

Improved thermoelectric properties of n-type Bi2Te3 alloy deriving from two-phased heterostructure by the reduction of CuI with Sn

  • Mi-Kyung Han
  • Junphil Hwang
  • Sung-Jin KimEmail author
Article
  • 22 Downloads

Abstract

In this report, CuI and Sn co-doped n-type Bi2Te3 samples have been prepared by a high-temperature solid-state reaction, and the effect of co-doping on the thermoelectric properties was investigated from room temperature to 525 K. Sn single-doped and undoped Bi2Te3 were prepared for comparison. Detailed charge transport data including electrical conductivity, Seebeck coefficient, Hall coefficient, and thermal conductivity are presented. Microscopic observation of CuI/Sn co-doped samples revealed that numerous distinctive microstructures such as nanoprecipitates of the Cu and SnI-rich phase were generated in the matrix. The lattice thermal conductivity of CuI/Sn co-doped Bi2Te3 was substantially reduced compared to those of undoped and single doped Bi2Te3. Benefiting from the improved electrical transport properties by doping and the reduced lattice thermal conductivity by numerous microstructures, the ZT value of the Bi2Te3 doped with 1 at.% CuI/Sn is distinctly enhanced to 1.24 at 425 K. The average ZT value (ZTave ~ 1.02) at 300–525 K was clearly higher than those of Sn-doped Bi2Te3 (ZTave ~ 0.54) and CuI-doped Bi2Te3 (ZTave ~ 0.98). This work indicates that the average ZT can be improved over a broad temperature range using a co-doping approach.

Notes

Acknowledgements

This research was supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2011-0030147). M.K.H. was supported by RP-Grant 2016 of Ewha Womans University.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC/Taylor & Francis, Boca Raton, 2006)Google Scholar
  2. 2.
    G. Tan, L. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)CrossRefGoogle Scholar
  3. 3.
    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRefGoogle Scholar
  4. 4.
    L. Yang, Z.-G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 8, 1701797 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010)CrossRefGoogle Scholar
  6. 6.
    S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015)CrossRefGoogle Scholar
  7. 7.
    L.P. Hu, H.J. Wu, T.J. Zhu, C.G. Fu, J.Q. He, P.J. Ying, X.B. Zhao, Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 5, 1500411 (2015)CrossRefGoogle Scholar
  8. 8.
    B. Zhu, Z.-Y. Huang, X.-Y. Wang, Y. Yu, L. Yang, N. Gao, Z.-G. Chen, F.-Q. Zu, Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te2.4Se0.6 via its liquid state treatment. Nano Energy 42, 8–16 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.-S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi, L. Chen, High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120–3127 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Süssmann, A. Priemuth, U. Pröhl, Doping properties of Pb and Ge in Bi2Te2 and Sb2Te3. Phys. Status Solidi A 82, 561–567 (1984)CrossRefGoogle Scholar
  11. 11.
    I.V. Gasenkova, T.E. Svechnikova, Structural and transport properties of Sn-doped Bi2Te3–xSex single crystals. Inorg. Mater. 40, 570–575 (2004)CrossRefGoogle Scholar
  12. 12.
    T.E. Svechnikova, P.P. Konstantinov, G.T. Alekseeva, Physical properties of Bi2Te2.85Se0.15 single crystals doped with Cu, Cd, In, Ge, S, or Se. Inorg. Mater. 36, 556–560 (2000)CrossRefGoogle Scholar
  13. 13.
    G.E. Lee, I.H. Kim, Y.S. Lim, W.S. Seo, B.J. Choi, C.W. Hwang, Preparation and thermoelectric properties of doped Bi2Te3-Bi2Se3 solid solutions. J. Electron. Mater. 43, 1650–1655 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Xiao, J. Yang, Q.H. Jiang, L.W. Fu, Y.B. Luo, D. Zhang, Z.W. Zhou, Synergistic tuning of carrier and phonon scattering for high performance of n-type Bi2Te2.5Se0.5 thermoelectric material. J. Mater. Chem. A 3, 22332–22338 (2015)CrossRefGoogle Scholar
  15. 15.
    S.-J. Jung, B.-H. Lee, B.K. Kim, S.-S. Lim, S.K. Kim, D.-I. Kim, S.O. Won, H.-H. Park, J.-S. Kim, S.-H. Baek, Impurity-free, mechanical doping for the reproducible fabrication of the reliable n-type Bi2Te3-based thermoelectric alloys. Acta Mater. 150, 153–160 (2018)CrossRefGoogle Scholar
  16. 16.
    F. Wu, H. Song, J. Jia, X. Hu, Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy. Prog. Nat. Sci. 23, 408–412 (2013)CrossRefGoogle Scholar
  17. 17.
    C.M. Jaworski, V. Kulbachinskii, J.P. Heremans, Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Phys. Rev. B 80, 233201 (2009)CrossRefGoogle Scholar
  18. 18.
    Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 25, 966–976 (2015)CrossRefGoogle Scholar
  19. 19.
    M.-K. Han, K. Ahn, H.J. Kim, J.-S. Rhyee, S.-J. Kim, Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement. J. Mater. Chem. 21, 11365–11370 (2011)CrossRefGoogle Scholar
  20. 20.
    S. Wang, H. Li, R. Lu, G. Zheng, X. Tang, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology 24, 285702 (2013)CrossRefGoogle Scholar
  21. 21.
    M.-K. Han, B.G. Yu, Y. Jin, S.-J. Kim, A synergistic effect of metal iodide doping on the thermoelectric properties of Bi2Te3. Inorg. Chem. Front. 4, 881–888 (2017)CrossRefGoogle Scholar
  22. 22.
    B.A. Hunter, C.J. Howard, Rietica (Australian Nuclear Science and Technology Organization: Menai, 1998) http://www.ccp14.ac.uk/tutorial/lhpm-rietica/doc/manual.pdf
  23. 23.
    W. McClune, Powder Diffraction File, JCPDS-International Center for Diffraction Data, Swarthmore, PA. http://www.icdd.com/index.php/pdfsearch/
  24. 24.
    Y.S. Lim, M. Song, S. Lee, T.-H. An, C. Park, W.-S. Seo, Enhanced thermoelectric properties and their controllability in p-type (BiSb)2Te3 compounds through simultaneous adjustment of charge and thermal transports by Cu incorporation. J. Alloys Compd. 687, 320–325 (2016)CrossRefGoogle Scholar
  25. 25.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 90th edn. (CRC Press, Boca Raton, 2009)Google Scholar
  26. 26.
    S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P.F.P. Poudeu, K.L. Stokes, Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions. Adv. Energy Mater. 1, 1141–1147 (2011)CrossRefGoogle Scholar
  27. 27.
    A.F. Ioffe, Physics of Semiconductors (Academic Press, New York, 1960)Google Scholar
  28. 28.
    B. Wiendlocha, Resonant levels, vacancies, and doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 tetradymites. J. Electron. Mater. 45, 3515–3531 (2016)CrossRefGoogle Scholar
  29. 29.
    J.S. Rhyee, E. Cho, K.H. Lee, S.M. Lee, S.I. Kim, H. Kim, Y.S. Kwon, S.J. Kim, Thermoelectric properties and anisotropic electronic band structure on the In4Se3 − x compounds. Appl. Phys. Lett. 95, 212106 (2009)CrossRefGoogle Scholar
  30. 30.
    H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Nano ScienceEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations