Advertisement

Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors

  • Wael Z. TawfikEmail author
  • Zaki S. Khalifa
  • M. Sh. Abdel-wahab
  • Ahmed H. Hammad
Article
  • 99 Downloads

Abstract

Pure and cobalt (Co) doped CuO thin films have been deposited by DC and AC reactive magnetron sputtering technique. The doping ratio has been controlled by the RF power of the AC sputtering unit. The sputtering power ranges from 0 to 50 W. The crystal structure of the films has been identified by X-ray diffraction. One of the peaks has been shifted toward the high diffraction angle. Energy dispersive analysis shows cationic deficiency of the pure and doped samples. Morphology of the films has been investigated by atomic force microscopy. Film roughness decrease with the increase of sputtering power. Spectrophotometry studies reveal that films darken with the increase of sputtering power. The current–voltage curves show Ohmic contacts and an enhancement in the conductivity with the increase of Co concentrations. Photoresponse measurements have shown that the film doped at 50 W is the best photodetector sensor.

References

  1. 1.
    Y. Lu, N. Zhang, Q. Zhao, J. Liang, J. Chen, Micro-nanostructured CuO/C spheres as high-performance anode material for Na-ion batteries. Nanoscale 7, 2770–2776 (2015)CrossRefGoogle Scholar
  2. 2.
    W.Z. Tawfik, M. Esmat, S.I. El-Dek, Drastic improvement in magnetization of CdO nanoparticles by Fe doping. Appl. Nanosci. 7, 863–870 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Abbas, W. Tawfik, J. Chen, CdO nanorods and Cd(OH)2/Ag core/satellite nanorods: rapid and efficient sonochemical synthesis, characterization and their magnetic properties. Ultrason. Sonochem. 40, 577–582 (2018)CrossRefGoogle Scholar
  4. 4.
    B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, C. Ronning, Binary copper oxide semiconductors: from materials towards devices. Phys. Status Solidi B 249, 1487–1509 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Frondel, Paramelaconite: a tetragonal oxide of copper. Am. Mineral. 26, 657–672 (1941)Google Scholar
  6. 6.
    A.S. Zoolfakar, R. Abdul Rani, A.J. Morfa, A.P. O’Mullaned, K. Kalantar-zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2, 5247–5270 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Sabbaghan, A.S. Shahvelayati, K. Madankar, CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids. Spectrochim. Acta A 135, 662–668 (2015)CrossRefGoogle Scholar
  8. 8.
    V. Scuderi, G. Amiard, S. Boninelli, S. Scalese, M. Miritello, P.M. Sberna, V. Privitera, G. Impellizzeri, Photocatalytic activity of CuO and Cu2O nanowires. Mater. Sci. Semicond. Process. 42, 89–93 (2016)CrossRefGoogle Scholar
  9. 9.
    Ch-Y. Chiang, Y. Shin, S. Ehrman, Dopant effects on conductivity in copper oxide photoelectrochemical cells. Appl. Energy 164, 1039–1042 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhara, A.K. Pal, Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application. J. Alloy. Compd. 724, 456–464 (2017)CrossRefGoogle Scholar
  11. 11.
    J.F. Pierson, A. Thobor-Keck, A. Billard, Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210, 359–367 (2003)CrossRefGoogle Scholar
  12. 12.
    T.V. Pham, M. Rao, P. Andreasson, Y. Peng, J. Wang, K.B. Jinesh, Photocarrier generation in CuxO thin films deposited by radio frequency sputtering. Appl. Phys. Lett. 102, 032101 (2013)CrossRefGoogle Scholar
  13. 13.
    A.S. Zoolfakar, M.Z. Ahmad, R. Abdul Rani, J.Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, K. Kalantar-zadeh, Nanostructured copper oxides as ethanol vapour sensors. Sens. Actuators B 185, 620–627 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Cho, Optical and electrical properties of CuO thin films deposited at several growth temperatures by reactive RF magnetron sputtering. Met. Mater. Int. 19, 1327–1331 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Wu, K.S. Hui, K.N. Hui, L. Li, H.-H. Chun, Y.R. Cho, Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J. Mater. Sci.: Mater. Electron. 27, 1719–1724 (2016)Google Scholar
  16. 16.
    Y. Ohya, S. Ito, T. Ban, Y. Takahashi, Preparation of CuO thin films and their electrical conductivity. Key Eng. Mater. 181–182, 113–116 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Das, T.L. Alford, Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. J. Appl. Phys. 113, 244905 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Faiz, K. Siraj, M.F. Khan, M. Irshad, S. Majeed, M.S. Rafique, S. Naseem, Microstructural and optical properties of dysprosium doped copper oxide thin films fabricated by pulsed laser deposition technique. J. Mater. Sci.: Mater. Electron. 27, 8197–8205 (2016)Google Scholar
  19. 19.
    D. Zhang, W. Zheng, R.C. Lin, T.T. Li, Z.J. Zhang, F. Huang, High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed. J. Alloy. Compd. 735, 150–154 (2018)CrossRefGoogle Scholar
  20. 20.
    K. Chen, Ch He, D. Guo, Sh. Wang, Z. Chen, J. Shen, P. Lia, W. Tang, Low-voltage-worked photodetector based on Cu2O/GaOOH shell-core heterojunction nanorod arrays. J. Alloy. Compd. 755, 199–205 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Xiang, Ch Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W.P. Hu, W. Chen, Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small 11, 4829–4836 (2015)CrossRefGoogle Scholar
  22. 22.
    L. Zheng, K. Hu, F. Teng, X. Fang, Novel UV–visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small 13, 1602448 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Zheng, F. Teng, Z. Zhang, B. Zhao, X. Fang, Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions. J. Mater. Chem. C 4, 10032–10039 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28, 403–433 (2016)CrossRefGoogle Scholar
  25. 25.
    Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J.-L. Sun, Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array. ACS Appl. Mater. Interfaces 6, 20887–20894 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huangc, W. Tang, A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction. J. Mater. Chem. C 5, 8688–8693 (2017)CrossRefGoogle Scholar
  27. 27.
    P.V. Raghavendra, J.S. Bhat, N.G. Deshpande, Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors. Superlattices Microstruct. 113, 754–760 (2018)CrossRefGoogle Scholar
  28. 28.
    B.J. Hansen, N. Kouklin, G. Lu, I.-K. Lin, J. Chen, X. Zhang, Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. J. Phys. Chem. C 114, 2440–2447 (2010)CrossRefGoogle Scholar
  29. 29.
    V. Saravanan, P. Shankar, G.K. Mani, J. Bosco, B. Rayappan, Growth and characterization of spray pyrolysis deposited copper oxide thin films: influence of substrate and annealing temperatures. J. Anal. Appl. Pyrolysis 111, 272–277 (2015)CrossRefGoogle Scholar
  30. 30.
    M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Opt. Mater. 32, 696–699 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Mridha, D. Basak, Aluminium doped ZnO films: electrical, optical and photoresponse studies. J. Phys. D 40, 6902–6907 (2007)CrossRefGoogle Scholar
  32. 32.
    E.A. Villegas, C.M. Aldao, R. Savu, L.A. Ramajo, R. Parra, Effects of grain size on the UV-photoresponse of zinc oxide thin films grown by spray-pyrolysis. Phys. Status Solidi A 215, 1800107 (2018)CrossRefGoogle Scholar
  33. 33.
    R.E. Dinnebier, S.J.L. Billinge, Powder Diffraction Theory and Practice (Royal Society of Chemistry, Cambridge, 2008)CrossRefGoogle Scholar
  34. 34.
    Y.M. Hu, J.Y. Li, N.Y. Chen, C.Y. Chen, T.C. Han, C.C. Yu, Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices. J. Appl. Phys. 121, 085302 (2017)CrossRefGoogle Scholar
  35. 35.
    H.-L. Shen, H. Zhang, L.-F. Lu, F. Jiang, C. Yang, Preparation and properties of AZO thin films on different substrates. Prog. Nat. Sci. 20, 44–48 (2010)CrossRefGoogle Scholar
  36. 36.
    A. Rebello, Z.C.M. Winter, S. Viall, J.J. Neumeier, Multiple phase transitions in CuO observed with thermal expansion. Phys. Rev. B 88, 094420 (2013)CrossRefGoogle Scholar
  37. 37.
    N.N. Liu, J.L. Sun, D. Wu, Elastic constants and thermodynamic properties of Cu, Cu2O and CuO from first-principles calculations. Adv. Mater. Res. 335–336, 328–332 (2011)Google Scholar
  38. 38.
    G. Abadiasa, Ph. Guerin, In situ stress evolution during magnetron sputtering of transition metal nitride thin films. Appl. Phys. Lett. 93, 111908 (2008)CrossRefGoogle Scholar
  39. 39.
    A. Sreedhar, M.H.P. Reddy, S. Uthanna, J.F. Pierson, Sputter power influenced structural, electrical, and optical behaviour of nanocrystalline CuNiO2 films formed by RF magnetron sputtering. ISRN Condens. Matter Phys. 2013, 527341–527349 (2013)Google Scholar
  40. 40.
    W.-F. Wu, B.-S. Chiou, S.-T. Hsieh, Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films. Semicond. Sci. Technol. 9, 1242–1249 (1994)CrossRefGoogle Scholar
  41. 41.
    A. L. Tchougreeff, d-d spectra of transition metal oxides by effective crystal field method. J. Mol. Catal. A 119, 377–386 (1997)CrossRefGoogle Scholar
  42. 42.
    S.C. Ray, Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol. Energy Mater. Sol. Cells 68, 307–312 (2001)CrossRefGoogle Scholar
  43. 43.
    Y. Akaltun, Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction. Thin Solid Films 594, 30–34 (2015)CrossRefGoogle Scholar
  44. 44.
    F. Bayansal, T. Taskopru, B. Sahin, H.A. Cetinkara, Effect of cobalt doping on nanostructured CuO thin films. Metall. Mater. Trans. A 45, 3670–3673 (2014)CrossRefGoogle Scholar
  45. 45.
    M. Nesa, M. Sharmin, K.S. Hossain, A.H. Bhuiyan, Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. J. Mater. Sci.: Mater. Electron. 28, 12523–12534 (2017)Google Scholar
  46. 46.
    Y. Shen, M. Guoa, X. Xia, G. Shao, Role of materials chemistry on the electrical/electronic properties of CuO thin films. Acta Mater. 85, 122–131 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Lange, M. Martin, The electrical conductivity of CoO: experimental results and a new conductivity model. Ber. Bunsenges. Phys. Chem. 101, 176–184 (1997)CrossRefGoogle Scholar
  48. 48.
    Y. Peng, Z. Zhang, T.V. Pham, Y. Zhao, P. Wu, J. Wang, Density functional theory analysis of dopants in cupric oxide. J. Appl. Phys. 111, 103708–103705 (2012)CrossRefGoogle Scholar
  49. 49.
    A. Jilani, M.Sh. Abdel-wahab, H.Y. Zahran, I.S. Yahia, A.A. Al-Ghamdi, A. Alshahrie, A.M. El-Naggar, Chemical state analysis, optical band gap, and photocatalytic decolorization of cobalt-doped ZnO nanospherical thin films by DC/RF sputtering technique. Optik 164, 143–154 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceBeni-Suef UniversityBeni SuefEgypt
  2. 2.Department of Materials Science and EngineeringChonnam National UniversityGwangjuRepublic of Korea
  3. 3.Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced SciencesBeni-Suef UniversityBeni SuefEgypt
  4. 4.Electron Microscope and Thin Films Department, Physics DivisionNational Research CentreDokki, GizaEgypt
  5. 5.Center of NanotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations