Influence of Sm and Nb on the structural, electric, magnetic and magneto-electric properties of BaTiO3-Li0.5Fe2.5O4 composite ceramics grown by the conventional solid state technique

  • Ganapathi Rao GajulaEmail author
  • Lakshmi Rekha Buddiga
  • K. N. Chidambara Kumar
  • Madhavaprasad Dasari


The Sm and Nb doped BaTiO3-Li0.5Fe2.5O4 composite ceramics having chemical formulae (90)BaTi(1−2x)NbxSmxO3 + (10) Li0.5Fe2.5O4 (x = 0, 0.05 and 0.1) were synthesized using conventional solid state technique. The structural, morphological, magnetic, dielectric, ferroelectric and magneto-electric properties of composites have been studied. The XRD measurement reveals the absence of peaks pertaining to impurities and strongly confirms the high crystalline nature of all the composites. From FESEM images, the average grain size of composites increases with increase in the concentration of Nb and Sm. The VSM studies confirm the soft magnetic nature of all the composites. The dielectric measurements confirm the increase in the transition temperature (Tc) of the BTL composite with an increase in the concentration of Nb and Sm. The P–E studies confirm that the ferroelectric nature of the BTL composite softens after doping Nb and Sm in it. The ME voltage coefficient value confirms the uniform growth of grains in all the composites and reveals a strong interaction between ferroelectric and magnetic orders.



We would like to thank Dr. P.D Babu for extending VSM (M-H, M-T) measurements at UGC-DAE Consortium for Scientific Research, Mumbai center, R5-shed, BARC, Mumbai—400 085. We would also like to thank Dr. V. Raghavendra Reddy and Dr. Mukul Gupta of UGC-DAE Consortium for Scientific Research, Indore for extending the facilities P-E loops and XRD and their support. We also thank INUP at IITB for extending the facilities FESEM, dielectric measurements.


  1. 1.
    J.F. Scott, Multiferroic memories. Nat. Mater. 6(4), 256–257 (2007)CrossRefGoogle Scholar
  2. 2.
    R. Ramesh, Materials science: emerging routes to multiferroics. Nature 461, 1218–1219 (2009)CrossRefGoogle Scholar
  3. 3.
    C.H. Sim, Z.Z. Pan, J. Wang, Residual stress and magnetic behavior of multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 thin films. J. Appl. Phys. 105, 084113–084113 (2009)CrossRefGoogle Scholar
  4. 4.
    C.W. Nan, Magnetoelectric effect in composite of piezoelectric and piezomagnetic phases. Phy. Rev. B 50, 6082–6088 (1994)CrossRefGoogle Scholar
  5. 5.
    L. Mitoseriu, V. Buscaglia, M. Viviani, M.T. Buscaglia, I. Pallecchi, C. Harnagea, A. Testino, V. Trefiletti, P. Nanni, A.S. Siri, BaTiO3–(Ni0.5Zn0.5)Fe2O4 ceramic composites with ferroelectric and magnetic properties. J. Eur. Ceram. Soc. 27(13–15), 4379–4382 (2007)CrossRefGoogle Scholar
  6. 6.
    R. Grigalaitisa, M.M. Vijatović Petrovi, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskasa, A. Brilingasa, B.D. Stojanović, J. Banysa, Dielectric and magnetic properties of BaTiO3-NiFe2O4 multiferroic composites. Ceram. Int. 40, 6165–6170 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Tsur, D.T. Dunbar, A.C. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25–34 (2001)CrossRefGoogle Scholar
  8. 8.
    D. Kaur, S. Bindra Narang, K.S. Thind, Processing, dielectric behavior and conductivity of some complex tungsten-bronze dielectric ceramics. J. Ceram. Process. Res. 7(1), 31–36 (2005)Google Scholar
  9. 9.
    O.P. Thakur, C. Parkash, D.K. Aggarwal, Structural and electrical properties of microwave-processed BaTiO3 ceramics. J. Ceram. Process. Res. 3(2), 75–79 (2002)Google Scholar
  10. 10.
    M. Aparna, T. Bhimasankaram, S.V. Suryanarayana, G. Prasad, G.S. Kumar, Effect of lanthanum doping on electrical and electromechanical properties of Ba1–x Lax TiO3. Bull. Mater. Sci. 24, 497–504 (2001)CrossRefGoogle Scholar
  11. 11.
    W. Cai, C. Fu, J. Gao, X. Deng, G. Chen, Z. Lin, Effect of samarium on the microstructure, dielectric and ferroelectric properties of barium titanate ceramics. Integr. Ferroelectr. 140, 92–103 (2012)CrossRefGoogle Scholar
  12. 12.
    W. Cai, C.L. Fu, J.C. Gao, H.Q. Chen, Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. J. Alloy. Compd. 480(2), 870–873 (2009)CrossRefGoogle Scholar
  13. 13.
    M.R. Panigrahi, S. Panigrahi, Synthesis and microstructure of Ca-doped BaTiO3 ceramics prepared by high-energy ball-milling. Phys. B. 404(21), 4267–4272 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Li, D.R. Jin, L.X. Zhou, Dielectric properties of barium strontium titanate (BST) ceramics synthesized by using mixed-phase powders calcined at varied temperatures. Mater. Lett. 76, 100–102 (2012)CrossRefGoogle Scholar
  15. 15.
    H.L. Chen, B. Cui, J. Tian, Mn-doped barium titanate nano-crystalline powders and ceramics prepared by sol-gel method. J. Inorg. Chem. 23(8), 1496–1500 (2009)Google Scholar
  16. 16.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, Study of the relaxor behaviour in BaTi1–xHfxO3 (0.20 ≤ x ≤ 0.30) ceramics. Solid. State. Sci. 9(11), 1054–1060 (2007)CrossRefGoogle Scholar
  17. 17.
    V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic, Influence of rare-earth dopants on barium titanate ceramics micro structure and corresponding electrical properties. J. Am. Ceram. Soc. 93(1), 132–137 (2010)CrossRefGoogle Scholar
  18. 18.
    M.C. Ferrarelli, C.C. Tan, D.C. Sinclair, Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO3. J. Mater. Chem. 21(17), 6292–6299 (2011)CrossRefGoogle Scholar
  19. 19.
    A.K. Nath, N. Medhi, Piezoelectric properties of environmental friendly bismuth doped barium titanate ceramics. Mater. Lett. 73, 75–77 (2012)CrossRefGoogle Scholar
  20. 20.
    W. Cai, C.L. Fu, J.C. Gao, Dielectric properties and microstructure of Mg doped barium titanate ceramics. Adv. Appl. Ceram. 110(3), 181–185 (2011)CrossRefGoogle Scholar
  21. 21.
    M.M. Vijatovic Petrovi, C.J.D. Bobi, T. Ramoska, Antimony doping effect on barium titanate structure and electrical properties. Ceram. Int. 37(7), 2669–2677 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Cernea, C. Galassi, B.S. Vasile, Electrical investigations of holmium-doped BaTiO3 derived from sol-gel combustion. J. Mater. Res. 25(6), 1057–1063 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Yuan, S.R. Zhang, X.H. Zhou, B. Tang, Effects of Nb2O5 doping on the microstructure and the dielectric temperature characteristics of barium titanate. J. Mater. Sci. 44(14), 3751–3757 (2009)CrossRefGoogle Scholar
  24. 24.
    N.A. Rejab, S. Sreekantan, K.A. Razak, Structural characteristics and dielectric properties of neodymium doped barium titanate. J. Mater. Sci. Mater. Electron. 22(2), 167–173 (2011)CrossRefGoogle Scholar
  25. 25.
    Y.X. Li, X. Yao, X.S. Wang, Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen. Ceram. Int. 38(S1), S29–S32 (2011)Google Scholar
  26. 26.
    T.D. Dunbar, W.L. Warren, B.A. Tuttle, C.A. Randall, Y. Tsur, Electron paramagnetic resonance investigations of lanthanide-doped barium titanate: dopant site occupancy. J. Phys. Chem. B 108, 908–917 (2004)CrossRefGoogle Scholar
  27. 27.
    P. Om, D. Kumar, R.K. Dwivedi, K.K. Srivastava, P. Singh, S. Singh, Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic. J. Mater. Sci. 42, 5490–5496 (2007)CrossRefGoogle Scholar
  28. 28.
    D.Y. Lu, M. Toda, M. Sugano, High-permittivity double rare-earth-doped barium titanate ceramics with diffuse phase transition. J. Am. Ceram. Soc. 89(10), 3112–3123 (2006)CrossRefGoogle Scholar
  29. 29.
    R.F. Zhang, C.Y. Deng, L. Ren, Z. Li, J.P. Zhou, Dielectric, ferromagnetic and maganetoelectric properties of BaTiO3–Ni0.7Zn0.3Fe2O4 composite ceramics. Mater. Res. Bull. 48, 4100–4104 (2013)CrossRefGoogle Scholar
  30. 30.
    R.S. Devan, S.A. Lokare, D.R. Patil, S.S. Chougule, Y.D. Kolekar, B.K. Chougule, Electrical conduction and magnetoelectric effect of (x) BaTiO3 + (1 – x) Ni0.92Co0.03Cu0.05Fe2O4 composites in ferroelectric rich region. J. Phys. Chem. Solids 67(7), 1524–1530 (2006)CrossRefGoogle Scholar
  31. 31.
    J. Zhanga, L. Wanga, L. Biana, J. Xu, A. Chang, Structural, dielectric and piezoelectric properties of xBiFeO3 – (1 – x)BaTi0.9Zr0.1O3 ceramics. Ceram. Int. 40(4), 5173–5179 (2014)CrossRefGoogle Scholar
  32. 32.
    B.D. Stojanovic, C.R. Foschini, M.A. Zaghete, F.O.S. Veira, K.A. Peron, M. Cilense, J.A. Varela, Size effect on structure and dielectric properties of Nb-doped barium titanate. J. Mater. Proc. Technol. 802, 143–144 (2003)Google Scholar
  33. 33.
    S.K. Upadhyaya, V. Raghavendra Reddya, N. Lakshmi, Study of (1 – x) BaTiO3–x Ni0.5Zn0.5Fe2O4 (x = 5, 10 and 15%) magneto-electric ceramic composites. J. Asian Ceram. Soc. 1, 346–350 (2013)CrossRefGoogle Scholar
  34. 34.
    W. Cai, S. Zhong, C. Fu, G. Chen, X. Deng, Microstructure, dielectric and ferroelectric properties of xBaZr0.2Ti0.8O3-(1−x)BiFeO3 solid solution ceramics. Mater. Res. Bull. 50, 259–267 (2014)CrossRefGoogle Scholar
  35. 35.
    T. Dechakupt, J. Tangsritrakul, P. Ketsuwan, R. Yimnirun, Microstructure and electrical properties of niobium doped barium titanate ceramics. Ferroelectrics 415, 141–148 (2011)CrossRefGoogle Scholar
  36. 36.
    W. Cao, C.A. Randall, Grain size and domain size relations in bulk ceramic ferroelectric materials. J. Phys. Chem. Solids 57, 1499–1505 (1996)CrossRefGoogle Scholar
  37. 37.
    Z. Yu, C. Ang, Maxwell–Wagner polarization in ceramic composites BaTiO3–(Ni0.3Zn0.7)Fe2.1O4. J. Appl. Phys. 91, 794–797 (2002)CrossRefGoogle Scholar
  38. 38.
    Y.J. Li, X.M. Chen, R.Z. Hou, Y.H. Tang, Maxwell–Wagner characterization of dielectric relaxation in Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 composite. Solid State Commun. 137, 120–125 (2006)CrossRefGoogle Scholar
  39. 39.
    Y.Q. Lin, X.M. Chen, Dielectric relaxations in Sr0.5Ba0.5Nb2O6/CoFe2O4 high-ε magnetoelectric composite ceramics. Mater. Chem. Phys. 117, 125–130 (2009)CrossRefGoogle Scholar
  40. 40.
    Y. Wang, Y. Wang, W. Rao, M. Wang, G. Li, Y. Li, J. Gao, W. Zhou, J. Yu, Dielectric, ferromagnetic and ferroelectric properties of the (1−x) Ba0.8Sr0.2TiO3–xCoFe2O4 multiferroic particulate ceramic composites. J. Mater. Sci. Mater. Electron. 23, 1064–1071 (2012)CrossRefGoogle Scholar
  41. 41.
    P. Richa Sharma, R.P. Pahuja, Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of theBaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014)CrossRefGoogle Scholar
  42. 42.
    A. Gupta, R. Chatterjee, Dielectric and magnetoelectric properties of BaTiO3–Co0.6Zn0.4Fe1.7Mn0.3O4 composite. J. Eur. Ceram. Soc. 33, 1017–1022 (2013)CrossRefGoogle Scholar
  43. 43.
    M.J. Miah, M.N.I. Khan, A.K.M.A. Hossain, Weak ferromagnetism and magnetoelectric effect in multiferroic xBa0.95Sr0.05TiO3–(1–x)BiFe0.9Gd0.1O3 relaxors. J. Magn. Magn. Mater. 401, 600–611 (2016)CrossRefGoogle Scholar
  44. 44.
    X. Wang, X. Xu, W. Gong, Z. Feng, R. Gong, Electromagnetic properties of Fe-Si-Al/BaTiO3/Nd2Fe14B particulate composites at microwave frequencies. J. Appl. Phys. 115, 17C722 (2014)CrossRefGoogle Scholar
  45. 45.
    A.A. Sattar, S.A. Rahman, Dielectric properties of rare earth substituted Cu–Zn ferrites. Phys. Status Solidi A 200(2), 415–422 (2003)CrossRefGoogle Scholar
  46. 46.
    B.Y. Wang, H.T. Wang, S.B. Singh, Y.C. Shao, Y.F. Wang, C.H. Chuang, P.H. Yeh, J.W. Chiou, C.W. Pao, H.M. Tsai, H.J. Lin, J.F. Lee, C.Y. Tsai, W.F. Hsieh, M.-H. Tsaif, W.F. Pong, RSC Adv. 3, 7884–7893 (2013)CrossRefGoogle Scholar
  47. 47.
    C. Lan, Y. Jiang, S. Yang, Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J. Mater. Sci. 46, 734–738 (2011)CrossRefGoogle Scholar
  48. 48.
    A. Srinivas, R. Gopalan, V. Chandrasekharan, Room temperature multiferroism and magnetoelectric coupling in BaTiO3–BaFe12O19 system. Solid State Commun. 149, 367 (2009)CrossRefGoogle Scholar
  49. 49.
    R.C. Kambale, N.R. Adhate, B.C. Chougule, Y.D. Kplekar, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method. J. Alloys Compd. 491, 372–377 (2010)CrossRefGoogle Scholar
  50. 50.
    R.S. Devan, B.K. Chougule, Effect of composition on coupled electric, magnetic and dielectric properties of two phase particulate magnetoelectric composite. J. Appl. Phys. 101, 014109–014114 (2007)CrossRefGoogle Scholar
  51. 51.
    G.P. Du, Z.J. Hu, Q.F. Han, X.M. Qin, W.Z. Shi, Effects of niobium donor doping on the phase structures and magnetic properties of Fe-doped BaTiO3 ceramics. J. Alloy. Compd. 492, L79–L81 (2010)CrossRefGoogle Scholar
  52. 52.
    A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys. Rev. Lett. 101, 247602-247601 (2008)Google Scholar
  53. 53.
    P. Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite. J. Alloy. Compd. 617, 140–148 (2014)CrossRefGoogle Scholar
  54. 54.
    K.K. Patankar, P.D. Dombale, V.L. Mathe, S.A. Patil, R.N. Patil, AC conductivity and magnetoelectric effect in MnFe1.8Cr0.2O4-BaTiO3 composites. Mater. Sci. Eng. B 87, 53–58 (2001)CrossRefGoogle Scholar
  55. 55.
    T.G. Lupieko, I.B. Lopatina, I.V. Kozyrev, L.A. Derbaremdiker, Electrophysical and magnetoelectric properties of ceramic materials of the type piezoelectric-ferrite. Inorg. Mater. 28, 481–485 (1992)Google Scholar
  56. 56.
    J. Van den Boomgaard, R.A.J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4,. J. Mater. Sci. 13, 1538–1548 (1978)CrossRefGoogle Scholar
  57. 57.
    C.W. Nan, Magneto-electric effect in composites of piezoelectric and piezo magnetic phases. Phys. Rev. B 50, 6082–6088 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ganapathi Rao Gajula
    • 1
    Email author
  • Lakshmi Rekha Buddiga
    • 2
  • K. N. Chidambara Kumar
    • 1
  • Madhavaprasad Dasari
    • 3
  1. 1.Department of Physics, BS&HSree Vidyanikethan Engineering CollegeTirupatiIndia
  2. 2.Department of ChemistryAndhra UniversityVisakhapatnamIndia
  3. 3.Department of PhysicsGIT, GITAM University (deemed to be university)VisakhapatnamIndia

Personalised recommendations