Advertisement

Eu3+-doped Sr2(Al1−xMgx)(Al1−xSi1+x)O7 phosphors: electronic, crystal structures and photoluminescence properties

  • Yan Chen
  • Xudong Yang
  • Boyou Wang
  • Li Dai
  • Qiao Chen
  • Yongqian Wang
Article
  • 38 Downloads

Abstract

The union of chemical compositions substitution and spectral controlling is of importance for the discovery of new materials or the implementation of properties optimization. In this work, we employed an effective strategy to regulate crystal structures by chemical unit co-substitution. We applied this strategy to Eu3+-doped Sr2(Al1−xMgx)(Al1−xSi1+x)O7 (0 ≤ x ≤ 1) solid solution phosphor, which was successfully synthesized by high temperature solid state reaction. The crystal structure remained the same group, P-421m, with controlling chemical compositions. The excitation peaks shifted between 263 and 270 nm and emission peaks shifted between 612 and 614 nm with a decreasing Stocks shift in overall tendency. The shift trend was clarified by Crystal Field Theory. The energy band structure and density of states of Sr2Al2SiO7 and Sr2MgSi2O7 were calculated by Density Functional Theory using the generalized gradient approximation. The band gap was also analyzed by diffuse reflectance spectrum as a contrast. The morphology was characterized by field emission scanning electron microscopy. Furthermore, the photoluminescence color of phosphors could be tuned from yellow to orange.

References

  1. 1.
    N. Zhang, Y.T. Tsai, M.H. Fang et al., Aluminate Red phosphor in light-emitting diodes: theoretical calculations, charge varieties, and high-pressure luminescence analysis. ACS Appl. Mater. Interfaces. 9(28), 23995–24004 (2017)CrossRefGoogle Scholar
  2. 2.
    C.C. Lin, Y.T. Tsai, H.E. Johnston et al., Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors. J. Am. Chem. Soc. 139(34), 11766–11770 (2017)CrossRefGoogle Scholar
  3. 3.
    L.M.W. Leggett, D.A. Ball, The implication for climate change and peak fossil fuel of the continuation of the current trend in wind and solar energy production. Energy Policy 41, 610–617 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Liu, Y. Fang, G.Z. Wei et al., A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 137(29), 9400–9408 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Liu, W. Xie, Y. Lü et al., Multichannel luminescence properties of mixed-valent Eu2+/Eu3+ coactivated SrAl3BO7 nanocrystalline phosphors for near-UV LEDs. Inorg. Chem. 56(22), 13829–13841 (2017)CrossRefGoogle Scholar
  6. 6.
    S.A. Khan, H. Zhong, W. Ji et al., Single-phase white light-emitting CaxBa(9–x)Lu2Si6O24:Eu2+/Mn2+ phosphors. ACS Omega 2(9), 6270–6277 (2017)CrossRefGoogle Scholar
  7. 7.
    T. Nakajima, H. Hanawa, T. Tsuchiya, Plant habitat-conscious white light-emitting devices: Dy3+-emission considerably reduces involvement in photosynthesis. J. Mater. Chem. C 3(14), 3371–3378 (2015)CrossRefGoogle Scholar
  8. 8.
    D. Wen, H. Kuwahara, H. Kato et al., Anomalous orange light-emitting (Sr, Ba)2SiO4:Eu2+ phosphors for warm white LEDs. ACS Appl. Mater. Interfaces. 8(18), 11615–11620 (2016)CrossRefGoogle Scholar
  9. 9.
    S.A. Bhagat, S.V. Borghate, N.T. Kalyani et al., Novel Na+ doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays. Luminescence 30(3), 251–256 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Arunkumar, G. Venkataiah, K. Marimuthu, Spectroscopic and energy transfer behavior of Dy3+ ions in B2O3-TeO2-PbO-PbF2-Bi2O3-CdO glasses for laser and WLED applications. Spectrochim. Acta A. 136, 1684–1697 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Dey, V.K. Rai, Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices. Dalton Trans. 43(1), 111–118 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Chen, Z. Xia, M.S. Molokeev et al., Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2–(1–x)Ca10Li(PO4)7: Eu2+ phosphors. Chem. Mater. 29(3), 1430–1438 (2017)CrossRefGoogle Scholar
  13. 13.
    G. Li, Y. Tian, Y. Zhao et al., Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44(23), 8688–8713 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Hirosaki, T. Takeda, S. Funahashi et al., Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach. Chem. Mater. 26(14), 4280–4288 (2014)CrossRefGoogle Scholar
  15. 15.
    Z. Xia, S. Miao, M.S. Molokeev et al., Structure and luminescence properties of Eu2+ doped LuxSr2–xSiNxO4–x phosphors evolved from chemical unit cosubstitution. J. Mater. Chem. C 4(6), 1336–1344 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Katyayan, S. Agrawal, Facile molten salt synthesis, structural, morphological and optical studies of ASiO3: Eu2+, Er3+(A=Ca, Ba, Sr) perovskites. J. Mater. Sci. Mater. Electron. 29(19), 16609–16629 (2018)CrossRefGoogle Scholar
  17. 17.
    T. Endo, Y. Doi, M. Wakeshima et al., Crystal structures and magnetic properties of new europium melilites Eu2MSi2O7 (M=Mg, Mn) and their strontium analogues. Inorg. Chem. 49(23), 10809–10814 (2010)CrossRefGoogle Scholar
  18. 18.
    E. Finley, A. Cobb, A. Duke et al., Optimizing blue persistent luminescence in (Sr1–δBaδ)2MgSi2O7:Eu2+, Dy3+ via solid solution for use in point-of-care diagnostics. ACS Appl. Mater. Interfaces. 8(40), 26956–26963 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Singh, S. Sheoran, V. Tanwar, Europium doped silicate phosphors: synthetic and characterization techniques. Adv. Mater. Lett. 8, 656–672 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Wang, Z. Zhao, Q. Wu et al., A garnet-based Ca2YZr2Al3O12: Eu3+ red-emitting phosphor for n-UV light emitting diodes and field emission displays: electronic structure and luminescence properties. Inorg. Chem. 55(21), 11072–11077 (2016)CrossRefGoogle Scholar
  21. 21.
    D.L. Wood, J.S. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5(8), 3144 (1972)CrossRefGoogle Scholar
  22. 22.
    A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Física 53(5), 18–22 (2007)Google Scholar
  23. 23.
    I.P. Sahu, D.P. Bisen, N. Brahme et al., Luminescent properties of R+ doped Sr2MgSi2O7: Eu3+ (R+=Li+, Na+ and K+) orange-red emitting phosphors. J. Mater. Sci.: Mater. Electron. 27(7), 6721–6734 (2016)Google Scholar
  24. 24.
    M. Chang, H. Hu, Y. Zhang et al., Core-shell-core heterostructural engineering of Y2O3: Eu3+/MCM-41/YVO4:Eu3+ for enhanced red emission and tunable, broadened-band response to excitation. J. Mater. Sci.: Mater. Electron. 28(21), 16026–16035 (2017)Google Scholar
  25. 25.
    D. Singh, V. Tanwar, A.P. Simantilleke et al., Synthesis and enhanced luminescent characterization of SrAl4O7:Eu2+, RE3+(RE=Nd, Dy) nanophosphors for light emitting applications. J. Mater. Sci.: Mater. Electron. 27(5), 5303–5308 (2016)Google Scholar
  26. 26.
    N. Yamashita, Luminescence centers of Ca(S:Se) phosphors activated with impurity ions having s2 configuration. I. Ca (S:Se):Sb3+ phosphors. J. Phys. Soc. Jpn. 35, 1089 (1973)CrossRefGoogle Scholar
  27. 27.
    D. Singh, S. Sheoran, V. Tanwar et al., Optical characteristics of Eu(III) doped MSiO3 (M=Mg, Ca, Sr and Ba) nanomaterials for white light emitting applications. J. Mater. Sci.: Mater. Electron. 28(4), 3243–3253 (2017)Google Scholar
  28. 28.
    Q. Zhang, X. Wang, X. Ding et al., A potential red-emitting phosphor BaZrGe3O9:Eu3+ for WLED and FED applications: synthesis, structure, and luminescence properties. Inorg. Chem. 56(12), 6990–6998 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Singh, V. Tanwar, A.P. Samantilleke et al., Synthesis of Sr(1–xy)Al4O7: Eux 2+, Lny 3+(Ln=Dy, Y, Pr) nanophosphors using rapid gel combustion process and their down conversion characteristics. Electron. Mater. Lett. 13(3), 222–229 (2017)CrossRefGoogle Scholar
  30. 30.
    D. Singh, V. Tanwar, A.P. Simantilke et al. Rapid synthesis and photoluminescent characterization of MAl2O4:Eu2+, Dy3+ (M=Ca/Ca+ Ba/Ca+ Mg) blue nanophosphors for white lighting display applications, Adv. Mater. Lett. 7(1), 47–53 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Zhong, D. Chen, W. Zhao et al., Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes. J. Mater. Chem. C 3(17), 4500–4510 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
  2. 2.Quality DepartmentGuangzhou Automobile Group New Energy Co., Ltd.GuangzhouPeople’s Republic of China

Personalised recommendations