Advertisement

Electrodeposition of nano crystalline cobalt oxide on porous copper electrode for supercapacitor

  • M. Kalyani
  • R. N. Emerson
Article
  • 9 Downloads

Abstract

The cobalt oxide thin films were prepared by electrodeposition methods on to porous copper substrate. As-deposited films were obtained as Co3O4 films with the help of heat treatment at 300 °C for 2 h. Their structural and surface morphological properties were investigated by using X-ray diffraction, Fourier transformation analysis and field emission scanning electron micrograph (FESEM), atomic force microscope, energy dispersive X-ray analysis techniques (EDAX). The X-ray diffractogram reveals the formation of cobalt hydroxide CoOOH with orthorhombic crystal structure and cobalt oxide Co3O4 with cubic crystal structure. The FESEM micrographs confirms the morphology of prepared films, also EDAX spectra confirms the presence of Co and O elements of the solid films. The electrochemical performance of the films was studied in aqueous 1 M KOH electrolyte using cyclic voltammetry. The cyclic voltammograms exhibits symmetric nature and increase in capacitance with respect to the film thickness. The maximum specific capacitance of cobalt hydroxide CoOOH is 602 F g−1 and cobalt oxide Co3O4 is found to be as 630 F g−1. The above investigation shows that low-cost cobalt oxide electrode can be a potential application in supercapacitor.

References

  1. 1.
    G. Wee, W.F. Mak, N. Phonthammachai, A. Kiebele, M.V. Reddy, B.V.R. Chowdari, G. Gruner, M. Srinivasan, S.G. Mhaisalkar, Particle size effect of silver nanoparticles decorated single walled carbon nanotube electrode for supercapacitors. J. Electrochem. Sci. 157, A179–A184 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–3003 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Zhang, Z.P. Guo, S.G. Kang, Y.J. Choi, C.J. Kim, K.W. Kim, H.K. Liu, Three-dimensional Li2O–NiO–CoO composite thin-film anode with network structure for lithium-ion batteries. J. Power Sources 189, 566–570 (2009)CrossRefGoogle Scholar
  4. 4.
    S.H. Nam, H.S. Shim, Y.S. Kim, M.A. Dar, J.G. Kim, W.B. Kim, Ag or Au nanoparticle embedded one-dimensional composite TiO2 nano fibres prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces 2(7), 2046–2052 (2010)CrossRefGoogle Scholar
  5. 5.
    X.J. Zhang, W.H. Shi, J.X. Zhu, D.J. Kharistal, W.Y. Zhao, B.S. Lalia, H.H. Hng, Q.Y. Yan, High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO Nano belts and single-walled carbon nanotubes. ACS Nano 5(3), 2013–2019 (2011)CrossRefGoogle Scholar
  6. 6.
    J.Chen,J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Facile and scalable fabrication of three dimensional Cu (OH)2 nano porous nano rods for solid-state supercapacitors. J. Mater. Chem. A3, 17385–17391 (2015)Google Scholar
  7. 7.
    Z. Dai, C.-S. Lee, B.-Y. Kim, C.-H. Kwak, J.-W. Yoon, H.-M. Jeong, J.-H. Lee, Honeycomb-like periodic porous LaFeO3 thin film chemi resistors with enhanced gas-sensing performances. ACS Appl. Mater. Interfaces 6, 16217–16226 (2014)CrossRefGoogle Scholar
  8. 8.
    M.D. Tuller, L.M. Dudley, Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35, 1949–1964 (1999)CrossRefGoogle Scholar
  9. 9.
    K. Mondal, J. Kumar, A. Sharma, Self-organized macroporous thin carbon films for supported metal catalysis. J. Colloids Surf. A 427, 83–94 (2013)CrossRefGoogle Scholar
  10. 10.
    L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010)CrossRefGoogle Scholar
  12. 12.
    F.J. O’Brien, B.A. Harley, I.V. Yannas, L. Gibson, Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25, 1077–1086 (2004)CrossRefGoogle Scholar
  13. 13.
    A.G. Mikos, G. Sarakinos, S.M. Leite, J.P. Vacant, R. Langer, Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323–330 (1993)CrossRefGoogle Scholar
  14. 14.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)CrossRefGoogle Scholar
  15. 15.
    B.C. Tappan, S.A. Steiner, E.P. Luther, Nano porous metal foams. Angew. Chem. Int. Ed. 49(27), 4544–4565 (2010)CrossRefGoogle Scholar
  16. 16.
    Y.S. Nam, T.G. Park, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47, 8–17 (1999)CrossRefGoogle Scholar
  17. 17.
    A. Imhof, D.J. Pine, Ordered macroporous materials by emulsion template in. Nature 389, 948–951 (1997)CrossRefGoogle Scholar
  18. 18.
    N.R. Cameron, High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46, 1439–1449 (2005)CrossRefGoogle Scholar
  19. 19.
    S. Barg, C. Soltmann, M. Andrade, D. Koch, G. Grathwohl, Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J. Am. Ceram. Soc. 91, 2823–2829 (2008)CrossRefGoogle Scholar
  20. 20.
    H. Fu, Q. Fu, N.L. Zhou, W. Huang, M.N. Rahamana, D. Wang, X. Liu, In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater. Sci. Eng. C 29, 2275–2281 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Zhai, J.-R. Ye, N. Wang, L.-H. Jiang, Q. Shen, Fabrication of porous film with controlled pore size and wettability by electric breath figure method. J. Mater. Chem. C 2, 7168–7172 (2014)CrossRefGoogle Scholar
  22. 22.
    Q. Hou, D.W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze drying process. J. Biomed. Mater. Res. B 67B, 732–740 (2003)CrossRefGoogle Scholar
  23. 23.
    I. Aranaz, M.C. Gutiérrez, M.L. Ferrer, F. del Monte, Preparation of chitosan nano composites with a macro porous structure by unidirectional freezing and subsequent freeze-drying. Mar. Drugs 12, 5619–5642 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Qian, H. Zhang, Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 86, 172–184 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminium oxide (AAO) tubular membranes. J. Membr. Sci. 319, 192–198 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Cherevko, C.-H. Chung, The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta 80(3), 1371–1377 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Cherevko, C.-H. Chung, Impact of key deposition parameters on the morphology of silver foams prepared by dynamic hydrogen template deposition. Electrochem. Acta 55(22), 6383–6390 (2010)CrossRefGoogle Scholar
  28. 28.
    X. Xing, S. Cherevko, C.-H. Chung, Formation of nano porous nickel oxides for supercapacitors prepared by electrodeposition with hydrogen evolution reaction and electrochemical de alloying. Mater. Chem. Phys. 126, 36 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Cherevko, N. Kulyk, C.-H. Chung, Nano porous palladium with sub-10 nm dendrites by electrodeposition for ethanol and ethylene glycol oxidation. Nanoscale 4(1), 103 (2012)CrossRefGoogle Scholar
  30. 30.
    X.F. Han, S. Shamaila, R. Sharif, Ferromagnetic Nanowires and Nanotubes (Intech, Rijeka, 2010)CrossRefGoogle Scholar
  31. 31.
    A.D. Jagadale, V.S. Kumbhar, C.D. Lokhande, Supercapacitive activities of potentiodynamically deposited nano flakes of cobalt oxide (Co3O4) thin film electrode, J. Colloid Interface Sci. 406, 225–230 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Wang, X. Shen, J. Horvat, Hydrothermal synthesis and optical, magnetic, and supercapacitane properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 113, 4357–4361 (2009)CrossRefGoogle Scholar
  33. 33.
    R. Zhang, J. Liu, H. Guo, X. Tong, Fabrication of cobalt oxide/carbon core-branch nanowire arrays as cathode materials for supercapacitor application. Mater. Lett. 134, 190–193 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. R. Soc. Chem. 45, 1529–1541 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Xia, Z. Peng, L.V. Cuncail, Y. Zhao, J. Hao, Z. Huang, Self-supported porous cobalt oxide nanowires with enhanced electrocatalytic performance toward oxygen evolution reaction. J. Chem. Sci. 128(12), 1879–1885 (2016)CrossRefGoogle Scholar
  36. 36.
    K.L. Ng, K.Y. Kok, B.H. Ong, Facile synthesis of self-assembled cobalt oxide supported on iron oxide as the novel electrocatalyst for enhanced electrochemical water electrolysis. ACS Appl. Nano Mater. 1, 401–409 (2017)CrossRefGoogle Scholar
  37. 37.
    Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsGovt Arts CollegeCoimbatoreIndia

Personalised recommendations