Advertisement

High conducting nanocomposite electrospun PVDF-HFP/\(\hbox {TiO}_{2}\) quasi-solid electrolyte for dye-sensitized solar cell

  • S. Vinoth
  • G. Kanimozhi
  • Harish Kumar
  • E. S. Srinadhu
  • N. SatyanarayanaEmail author
Article
  • 39 Downloads

Abstract

A high conducting electrospun nanocomposite polymer PVDF-HFP with a crystalline \(\hbox {TiO}_{2}\) fillers were synthesized and treated with various redox couple electrolytes for dye-sensitized solar cells is reported. The as-spun nanocomposite membranes were characterized using DSC, XRD and FTIR to study the thermal behaviour, crystallinity and interaction between polymer and fillers. The electrolyte uptake behaviour and impedance response of the electrolyte-activated quasi-solid electrolyte membranes were analyzed. A high conductivity of \(1.41\times 10^{-2}\, \text{S cm}^{-1}\) were achieved for 6 wt% of crystalline \(\hbox {TiO}_{2}\) fillers with LiI based redox couple and 4-tert-butylpyridine (TBP) as additive. In order to interpret the conducting mechanism and dielectric response involved in the ion dynamics and relaxation of charge carriers of the prepared quasi-solid electrolytes were analysed by the random barrier model along with the effect of electrode polarization and Havarliak–Negami formalism. The photovoltaic performance of all the prepared electrolytes were investigated for all the fabricated DSSC and obtained an efficiency of 5.93% for electrospun nanocomposite (PVDF-HFP/6wt% of \(\hbox {TiO}_{2}\)) polymer with LiI based redox couple and TBP additive, as quasi-solid electrolyte.

Notes

Acknowledgements

Dr. N. Satyanarayana gratefully acknowledges DST, CSIR, UGC, DRDO, AICTE, government of India for financial support in the form of major research projects grants.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflict of interest.

References

  1. 1.
    K. Kakiage, Y. Aoyama, T. Yano, K. Oya, Ji Fujisawa, M. Hanaya, Chem. Commun. 51, 15894 (2015).  https://doi.org/10.1039/C5CC06759F Google Scholar
  2. 2.
    Z. Yu, N. Vlachopoulos, M. Gorlov, L. Kloo, Dalton Trans. 40, 10289 (2011).  https://doi.org/10.1039/C1DT11023C Google Scholar
  3. 3.
    M.M. Noor, M.H. Buraidah, M.A. Careem, S.R. Majid, A.K. Arof, Electrochim. Acta 121, 159 (2014).  https://doi.org/10.1016/j.electacta.2013.12.136 Google Scholar
  4. 4.
    Y. Wang, X. Ma, Q. Zhang, N. Tian, J. Membr. Sci. 349(1–2), 279 (2010).  https://doi.org/10.1016/j.memsci.2009.11.060 Google Scholar
  5. 5.
    N. Latip, H. Ng, N. Farah, K. Ramesh, S. Ramesh, Org. Electron. 41, 33 (2017).  https://doi.org/10.1016/j.orgel.2016.11.040 Google Scholar
  6. 6.
    S. Yun, J.N. Freitas, A.F. Nogueira, Y. Wang, S. Ahmad, Z.S. Wang, Progress Polym. Sci. 59, 1 (2016).  https://doi.org/10.1016/j.progpolymsci.2015.10.004 Google Scholar
  7. 7.
    J. Zheng, J. Power Sources 348, 239 (2017).  https://doi.org/10.1016/j.jpowsour.2017.03.018 Google Scholar
  8. 8.
    Z. Tan, B. Zhao, P. Shen, S. Jiang, P. Jiang, X. Wang, S. Tan, J. Mater. Sci. 46(23), 7482 (2011).  https://doi.org/10.1007/s10853-011-5718-y Google Scholar
  9. 9.
    K.S. Liow, C.S. Sipaut, R.F. Mansa, M.C. Ung, M. Jafarzadeh, J. Mater. Sci.: Mater. Electron. 29(14), 11653 (2018).  https://doi.org/10.1007/s10854-018-9264-0 Google Scholar
  10. 10.
    Y. Ren, F. Lian, Y. Wen, H.Y. Guan, Polymer 54(18), 4807 (2013).  https://doi.org/10.1016/j.polymer.2013.07.013 Google Scholar
  11. 11.
    B.S. Lalia, E. Guillen-Burrieza, H.A. Arafat, R. Hashaikeh, J. Membr. Sci. 428, 104 (2013).  https://doi.org/10.1016/j.memsci.2012.10.061 Google Scholar
  12. 12.
    C. Brundha, R. Govindaraj, N. Santhosh, M.S. Pandian, P. Ramasamy, S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 28(15), 11509 (2017).  https://doi.org/10.1007/s10854-017-6947-x Google Scholar
  13. 13.
    J. Zhu, L. Jia, R. Huang, J. Mater. Sci.: Mater. Electron. 28(16), 12080 (2017).  https://doi.org/10.1007/s10854-017-7020-5 Google Scholar
  14. 14.
    Y.J. Lee, S.K. Jeong, N.J. Jo, Compos. Interfaces 16(4–6), 347 (2009).  https://doi.org/10.1163/156855409X450909 Google Scholar
  15. 15.
    I.A. Sahito, F. Ahmed, Z. Khatri, K.C. Sun, S.H. Jeong, J. Mater. Sci. 52(24), 13920 (2017).  https://doi.org/10.1007/s10853-017-1473-z Google Scholar
  16. 16.
    K. Sundaramoorthy, S.P. Muthu, R. Perumalsamy, J. Mater. Sci.: Mater. Electron. 29, 18074–18081 (2018).  https://doi.org/10.1007/s10854-018-9917-z Google Scholar
  17. 17.
    B.N. Rao, R.P. Suvarna, L. Giribabu, M. Raghavender, V.R. Kumar, IOP Conf. Ser.: Mater. Sci. Eng. 310(1), 012012 (2018)Google Scholar
  18. 18.
    G. Kanimozhi, S. Vinoth, H. Kumar, E.S. Srinadhu, N. Satyanarayana, Polym. Compos. (2018).  https://doi.org/10.1002/pc.25123 Google Scholar
  19. 19.
    S. Vinoth, G. Kanimozhi, K.H. Prasad, H. Kumar, E. Srinadhu, N. Satyanarayana, Polym. Compos. (2018).  https://doi.org/10.1002/pc.24904 Google Scholar
  20. 20.
    K. Selvakumar, M. Ramesh Prabhu, J. Mater. Sci.: Mater. Electron. 29(17), 15163 (2018).  https://doi.org/10.1007/s10854-018-9658-z Google Scholar
  21. 21.
    A. Serveh, E. Morteza, M. Jalil, K.H. Ali, R. Uta, Polym. Compos. 0, 0 (2017).  https://doi.org/10.1002/pc.24390 Google Scholar
  22. 22.
    Z. Osman, M. Mohd Ghazali, L. Othman, K. Md Isa, Results Phys. 2, 1 (2012).  https://doi.org/10.1016/j.rinp.2011.12.001 Google Scholar
  23. 23.
    Y.J. Lim, Y.H. An, N.J. Jo, Nanoscale Res. Lett. 7(1), 19 (2012).  https://doi.org/10.1186/1556-276X-7-19 Google Scholar
  24. 24.
    J.C. Fothergill, J.K. Nelson, M. Fu, in Conference on Electrical Insulation and Dielectric Phenomena (2008), type 1255, pp. 3–6.  https://doi.org/10.1109/CEIDP.2004.1364273
  25. 25.
    M. Forsyth, Solid State Ionics 147(3–4), 203 (2002).  https://doi.org/10.1016/S0167-2738(02)00017-6 Google Scholar
  26. 26.
    K.M. Kim, N.G. Park, K.S. Ryu, S.H. Chang, Polymer 43(14), 3951 (2002)Google Scholar
  27. 27.
    L. Fan, C.W. Nan, S. Zhao, Solid State Ionics 164(1–2), 81 (2003).  https://doi.org/10.1016/j.ssi.2003.08.004 Google Scholar
  28. 28.
    Z. Li, G. Su, X. Wang, D. Gao, Solid State Ionics 176(23–24), 1903 (2005).  https://doi.org/10.1016/j.ssi.2005.05.006 Google Scholar
  29. 29.
    V. Aravindan, P. Vickraman, T.P. Kumar, J. Membr. Sci. 305(1), 146 (2007).  https://doi.org/10.1016/j.memsci.2007.07.044 Google Scholar
  30. 30.
    N. Zebardastan, M. Khanmirzaei, S. Ramesh, K. Ramesh, Org. Electron. 49, 292 (2017).  https://doi.org/10.1016/j.orgel.2017.06.062 Google Scholar
  31. 31.
    G. Kanimozhi, S. Vinoth, H. Kumar, E. Srinadhu, S. Nallani, Mater. Res. Express (2018).  https://doi.org/10.1088/2053-1591/aaefc0 Google Scholar
  32. 32.
    M.K. Vyas, A. Chandra, J. Mater. Sci. 53(7), 4987 (2018).  https://doi.org/10.1007/s10853-017-1912-x Google Scholar
  33. 33.
    J.Y. Park, J.W. Lee, K.H. Park, T.Y. Kim, S.H. Yim, X.G. Zhao, H.B. Gu, E.M. Jin, Polym. Bull. 70(2), 507 (2013).  https://doi.org/10.1007/s00289-012-0826-7 Google Scholar
  34. 34.
    N. Shukla, A.K. Thakur, J. Mater. Sci. 45(15), 4236 (2010).  https://doi.org/10.1007/s10853-010-4519-z Google Scholar
  35. 35.
    A.M. Stephan, Eur. Polym. J. 42(1), 21 (2006).  https://doi.org/10.1016/j.eurpolymj.2005.09.017 Google Scholar
  36. 36.
    G.H. Kim, S.C. Hong, J. Mater. Sci. 53(17), 12365 (2018).  https://doi.org/10.1007/s10853-018-2484-0 Google Scholar
  37. 37.
    P. Vickraman, V. Senthilkumar, Ionics 16(8), 763 (2010).  https://doi.org/10.1007/s11581-010-0467-5 Google Scholar
  38. 38.
    N. Wu, Q. Cao, X. Wang, S. Li, X. Li, H. Deng, J. Power Sources 196(22), 9751 (2011).  https://doi.org/10.1016/j.jpowsour.2011.07.079 Google Scholar
  39. 39.
    L. Liao, C.F. Lien, D.L. Shieh, F.C. Chen, J.L. Lin, Phys. Chem. Chem. Phys. 4, 4584 (2002).  https://doi.org/10.1039/B204455M Google Scholar
  40. 40.
    M. Bousmina, Macromolecules 39(12), 4259 (2006).  https://doi.org/10.1021/ma052647f Google Scholar
  41. 41.
    O.B. Pavlova-Verevkina, L.A. Ozerina, E.D. Politova, N.M. Surin, A.N. Ozerin, Colloid J. 71(4), 529 (2009).  https://doi.org/10.1134/S1061933X09040152 Google Scholar
  42. 42.
    I. Popov, R. Nigmatullin, E. Koroleva, A. Nabereznov, J. Non-Cryst. Solids 358(1), 1 (2012).  https://doi.org/10.1016/j.jnoncrysol.2011.07.020 Google Scholar
  43. 43.
    G.E. Pike, Phys. Rev. B 6, 1572 (1972).  https://doi.org/10.1103/PhysRevB.6.1572 Google Scholar
  44. 44.
    J.C. Dyre, J. Appl. Phys. 64(5), 2456 (1988).  https://doi.org/10.1063/1.341681 Google Scholar
  45. 45.
    K. Funke, R. Banhatti, P. Grabowski, J. Nowinski, W. Wrobel, R. Dinnebier, O. Magdysyuk, Solid State Ionics 271, 2 (2015). http://www.sciencedirect.com/science/article/pii/S0167273814003993. The 11th International Symposium on Systems with Fast Ionic Transport (ISSFIT-11)
  46. 46.
    K. Funke, Progress Solid State Chem. 22, 111 (1993).  https://doi.org/10.1016/0079-6786(93)90002-9 Google Scholar
  47. 47.
    K. Funke, D. Wilmer, Solid State Ionics 136–137, 1329 (2000).  https://doi.org/10.1016/S0167-2738(00)00606-8 Google Scholar
  48. 48.
    S. Havriliak, S. Negami, Polymer 8, 161 (1967).  https://doi.org/10.1016/0032-3861(67)90021-3 Google Scholar
  49. 49.
    C. Iacob, J.R. Sangoro, A. Serghei, S. Naumov, Y. Korth, J. Krger, C. Friedrich, F. Kremer, J. Chem. Phys. 129(23), 234511 (2008).  https://doi.org/10.1063/1.3040278 Google Scholar
  50. 50.
    R.M. Hill, L.A. Dissado, J. Phys. C 18(19), 3829 (1985)Google Scholar
  51. 51.
    S. Vinoth, G. Kanimozhi, H. Kumar, E.S. Srinadhu, N. Satyanarayana, J. Nanopart. Res. 19(388), 1 (2017).  https://doi.org/10.1007/s11051-017-4071-8 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Vinoth
    • 1
  • G. Kanimozhi
    • 2
  • Harish Kumar
    • 2
  • E. S. Srinadhu
    • 3
  • N. Satyanarayana
    • 4
    Email author
  1. 1.Centre for Nanoscience & Technology, Madanjeet School of Green Energy TechnologiesPondicherry UniversityPuducherryIndia
  2. 2.Department of PhysicsPondicherry Engineering CollegePondicherryIndia
  3. 3.Department of Physics and AstronomyClemson UniversityClemsonUSA
  4. 4.Department of PhysicsPondicherry UniversityPondicherryIndia

Personalised recommendations