Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique

  • Prashant B. KharatEmail author
  • Apparao R. Chavan
  • Ashok V. Humbe
  • K. M. JadhavEmail author


Chemical co-precipitation method was employed to synthesize cobalt ferrite (CoFe2O4) nanoparticles and to prepare stable nanofluids. The cobalt ferrite nanoparticles and the prepared nanofluids were characterized further for their structural, morphological, elemental, magnetic properties and dispersion stability in order to explore various properties. It shows the prepared CoFe2O4 nanoparticles of spinel structured and 11 nm superparamagnetic, spherical in nature. Finally, CoFe2O4 nanoparticles were dispersed in the ethylene glycol to prepare magnetic nanofluid in various concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1% by volume). The prepared nanofluids showed highly stable of more than 8 days for 0.2 vol%. The thermo-acoustic studies were carried out at different temperatures ranging from 20 to 80 °C of the nanofluids. Thermo-acoustical properties such as ultrasonic velocity (U), acoustic impedance (Z), adiabatic compressibility (β), bulk modulus (K), ultrasonic attenuation (α), relaxation time (τ), and intermolecular free length (Lf) were estimated and examined in the present work. The thermo-acoustic studies of magnetic nanofluids elaborate deeper understanding of particle–fluid, particle–particle interactions as functions of concentration, temperature. In addition, the paper is intended to formulate a relationship between thermo-acoustic properties and concentration of CoFe2O4 in nanofluids, which would be of great importance to the nanofluids.


  1. 1.
    H. Chiam, W. Azmi, N. Usri, R. Mamat, N. Adam, Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 81, 420–429 (2017)CrossRefGoogle Scholar
  2. 2.
    L.J. Felicia, S. Vinod, J. Philip, Recent advances in magnetorheology of ferrofluids (magnetic nanofluids)—a critical review. J. Nanofluids 5, 1–22 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. 4, 1700036 (2017)CrossRefGoogle Scholar
  4. 4.
    I. Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Saidur, K. Leong, H. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)CrossRefGoogle Scholar
  6. 6.
    P.B. Kharat, A.V. Humbe, J.S. Kounsalye, K. Jadhav, Thermophysical investigations of ultrasonically assisted magnetic nanofluids for heat transfer. J. Supercond. Novel Magn. (2018). Google Scholar
  7. 7.
    L. Godson, B. Raja, D.M. Lal, S. Wongwises, Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Jiles, Introduction to Magnetism and Magnetic Materials. (CRC Press, Boca Raton, 2015)Google Scholar
  9. 9.
    M. Shisode, P.B. Kharat, D.N. Bhoyar, V. Vinayak, M. Babrekar, K. Jadhav, Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method. AIP Conf. Proc. 1953, 030276 (2018)CrossRefGoogle Scholar
  10. 10.
    S.B. Kale, S.B. Somvanshi, M. Sarnaik, S. More, S. Shukla, K. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. AIP Conf. Proc. 1953, 030193 (2018)CrossRefGoogle Scholar
  11. 11.
    G. Kale, A.V. Humbe, P. Kharat, D. Bhoyar, K. Jadhav, Tartaric acid a novel fuel approach: synthesis and characterization of CoFe2O4 nano particles. Bionano Front. 8, 146–148 (2015)Google Scholar
  12. 12.
    A. López-Ortega, E. Lottini, C.d.J. Fernandez, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27, 4048–4056 (2015)CrossRefGoogle Scholar
  13. 13.
    J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 17254–17261 (2017)Google Scholar
  14. 14.
    S. More, R. Kadam, A. Kadam, A. Shite, D. Mane, K. Jadhav, Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4. J. Alloys Compd. 502, 477–479 (2010)CrossRefGoogle Scholar
  15. 15.
    A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70–xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Raut, D. Kurmude, S. Jadhav, D. Shengule, K. Jadhav, Effect of 100 kGy γ-irradiation on the structural, electrical and magnetic properties of CoFe2O4 NPs. J. Alloys Compd. 676, 326–336 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloys Compd. 736, 1–11 (2018)CrossRefGoogle Scholar
  18. 18.
    B. Nafradi, E. Horvath, L. Forro, Magnetic-photoconductive material, magneto-optical data storage device, magneto-optical data storage system, and light-tunable microwave components comprising a photoconductive-ferromagnetic device, in, Google Patents, 2018Google Scholar
  19. 19.
    A.R. Chavan, R.R. Chilwar, P.B. Kharat, K. Jadhav, Effect of annealing temperature on structural, morphological, optical and magnetic properties of NiFe2O4 thin films. J. Supercond. Novel Magn. (2018). Google Scholar
  20. 20.
    D.R. Karana, R.R. Sahoo, Effect on TEG performance for waste heat recovery of automobiles using MgO and ZnO nanofluid coolants. Case Stud. Therm. Eng. 12, 358–364 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Bahiraei, R. Rahmani, A. Yaghoobi, E. Khodabandeh, R. Mashayekhi, M. Amani, Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Appl. Therm. Eng. (2018). Google Scholar
  22. 22.
    C. Qi, N. Zhao, X. Cui, T. Chen, J. Hu, Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids. Int. J. Heat Mass Transf. 123, 320–330 (2018)CrossRefGoogle Scholar
  23. 23.
    I. Zakaria, W. Mohamed, W. Azmi, A. Mamat, R. Mamat, W. Daud, Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids. Int. J. Heat Mass Transf. 119, 460–471 (2018)CrossRefGoogle Scholar
  24. 24.
    N.K. Gupta, A.K. Tiwari, S.K. Ghosh, Heat transfer mechanisms in heat pipes using nanofluids—a review. Exp. Therm. Fluid Sci. 90, 84–100 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Siavashi, H.R.T. Bahrami, E. Aminian, Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018)CrossRefGoogle Scholar
  26. 26.
    S.M. Jafari, F. Saramnejad, D. Dehnad, Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. J. Food Process Eng. 41, e12658 (2018)CrossRefGoogle Scholar
  27. 27.
    M.H. Esfe, S. Esfandeh, Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Appl. Therm. Eng. 131, 1026–1033 (2018)CrossRefGoogle Scholar
  28. 28.
    P.D. Tagle-Salazar, K. Nigam, C.I. Rivera-Solorio, Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renew. Energy 125, 334–343 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Akilu, A.T. Baheta, M.A.M. Said, A.A. Minea, K. Sharma, Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 179, 118–128 (2018)CrossRefGoogle Scholar
  30. 30.
    M.N. Rashin, J. Hemalatha, Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52, 1024–1029 (2012)CrossRefGoogle Scholar
  31. 31.
    M.N. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)CrossRefGoogle Scholar
  32. 32.
    M.N. Rashin, J. Hemalatha, Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp. Therm. Fluid Sci. 48, 67–72 (2013)CrossRefGoogle Scholar
  33. 33.
    K. Anu, J. Hemalatha, Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite nanofluids. J. Mol. Liq. 256, 213–223 (2018)CrossRefGoogle Scholar
  34. 34.
    P.B. Kharat, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Preparation and thermophysical investigations of CoFe2O4-based nanofluid: a potential heat transfer agent. J. Supercond. Novel Magn. (2018). Google Scholar
  35. 35.
    P.B. Kharat, M. Shisode, S. Birajdar, D. Bhoyar, K. Jadhav, Synthesis and characterization of water based NiFe2O4 ferrofluid. AIP Conf. Proc. 1832, 050122 (2017)CrossRefGoogle Scholar
  36. 36.
    P.B. Kharat, A.V.H. JSK, S.D. Birajdar, K. Jadhav, Preparation and diverse properties of cobalt ferrite ferrofluid. Int. J. Adv. Res. Basic Appl. Sci. 2, 106–109 ​(2017)Google Scholar
  37. 37.
    T. Kavitha, T. Vasantha, P. Venkatesu, R.R. Devi, T. Hofman, Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014)CrossRefGoogle Scholar
  38. 38.
    P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. AIP Conf. Proc. 1942, 050044 (2018)CrossRefGoogle Scholar
  39. 39.
    J.S. Kounsalye, P.B. Kharat, A.R. Chavan, A.V. Humbe, R. Borade, K. Jadhav, Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4. AIP Conf. Proc. 1942, 050067 (2018)CrossRefGoogle Scholar
  40. 40.
    J.S. Kounsalye, P.B. Kharat, D.N. Bhoyar, K. Jadhav, Radiation-induced modifications in structural, electrical and dielectric properties of Ti4+ ions substituted Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 8601–8609 (2018)Google Scholar
  41. 41.
    R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018)CrossRefGoogle Scholar
  42. 42.
    N. Daffé, F. Choueikani, S. Neveu, M.-A. Arrio, A. Juhin, P. Ohresser, V. Dupuis, P. Sainctavit, Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: influence of particle size and stoichiometry. J. Magn. Magn. Mater. 460, 243–252 (2018)CrossRefGoogle Scholar
  43. 43.
    K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves. (Academic Press, Cambridge, 2013)Google Scholar
  44. 44.
    W. Azmi, K.A. Hamid, R. Mamat, K. Sharma, M. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture. Appl. Therm. Eng. 106, 1190–1199 (2016)CrossRefGoogle Scholar
  45. 45.
    P. Shima, J. Philip, B. Raj, Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J. Phys. Chem. C 114, 18825–18833 (2010)CrossRefGoogle Scholar
  46. 46.
    L. Schmid, A. Wixforth, D.A. Weitz, T. Franke, Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluid. Nanofluid. 12, 229–235 (2012)CrossRefGoogle Scholar
  47. 47.
    F. Franks, Water a Comprehensive Treatise: Aqueous Solutions of Amphiphiles and Macromolecules, vol. 4 (Springer, Berlin, 2013)Google Scholar
  48. 48.
    R.A. Mahdi, H. Mohammed, K. Munisamy, N. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)CrossRefGoogle Scholar
  49. 49.
    B. Raj, J. Philip, K. Rajkumar, P. Kalyanasundaram, Effect of magnetic field on ultrasonic velocity in a magnetic nanofluid. Proc.-Indian Natl. Sci. Acad. 72, 145 (2006)Google Scholar
  50. 50.
    D. Pandey, S. Pandey, Ultrasonics: A Technique of Material Characterization in: Acoustic Waves. (InTech, London, 2010)Google Scholar
  51. 51.
    F. Kremer, A. Schönhals, The Scaling of the Dynamics of Glasses and Supercooled Liquids (Springer, New York, 2002)Google Scholar
  52. 52.
    M. Leena, S. Srinivasan, Synthesis and ultrasonic investigations of titanium oxide nanofluids. J. Mol. Liq. 206, 103–109 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations