Advertisement

Synthesis of poly(amidoamine) dendrimer-based dithiocarbamate magnetic composite for the adsorption of Co2+ from aqueous solution

  • Liu Danyang
  • Niu Lanli
  • Dai YiminEmail author
  • Zou Jiaqi
  • Chen Tianxiao
  • Zhou Yi
Article
  • 25 Downloads

Abstract

Poly(amidoamine) dendrimer-based dithiocarbamate magnetic composites (Fe3O4@SiO2–PAMAM–DTC) were synthesized for the adsorption of Co2+ from aqueous solution. The adsorbents were characterized by X-ray diffraction (XRD), fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometry (EDS), vibrating sample magnetometer (VSM) and N2 adsorption/desorption. The effects of different factors (such as solution pH, adsorption time, adsorption temperature, adsorbent dosage and competitive ions etc.) on adsorption were investigated. The experimental results showed that, the kinetic data was fitted to the pseudo-second-order model, and the adsorption data was consistent with the Frenudlich isotherm model. The adsorption process was spontaneous and endothermic. The magnetic composite is easy to synthetise, and the most important thing is that it can be quickly separated from aqueous solution by a magnet. The Fe3O4@SiO2–PAMAM–DTC composite can be a potential adsorbent for the removal of Co2+ from aqueous solution.

Notes

Acknowledgements

The authors greatly acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 21671026), Scientific Research Key Foundation of Hunan Provincial Education Department (Grant No. 15A001), Funding was provided by Hunan Provincial Science and Technology Department (Grant No. 2015SK20823).

References

  1. 1.
    A. Naeem, M.T. Saddique, S. Mustafa, S. Tasleem, K.H. Shah, M. Waseem, J. Hazard. Mater. 172, 124–128 (2009)CrossRefGoogle Scholar
  2. 2.
    H. Yang, S. Teng, H. Wang, Z. Zhao, D. Li, J. Nanosci. Nanotechnol. 16, 5815–5823 (2016)CrossRefGoogle Scholar
  3. 3.
    K.A. Krishnan, T.S. Anirudhan, Chem. Eng. J. 137, 257–264 (2008)CrossRefGoogle Scholar
  4. 4.
    T.N. Selvi, S. Sankar, K. Dinakaran, J. Mater. Sci. Mater. Electron. 24, 4873–4880 (2013)CrossRefGoogle Scholar
  5. 5.
    F. Fu, Q. Wang, J. Environ. Manage. 92, 407–418 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Zhu, S.A. Baig, T. Sheng, Z. Lou, Z. Wang, X. Xu, J. Hazard. Mater. 286, 220–228 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan, X. Wang, J. Mater. Chem. 22, 3527–3535 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Masoumi, M. Ghaemy, A.N. Bakht, Ind. Eng. Chem. Res. 53, 8188–8197 (2014)CrossRefGoogle Scholar
  9. 9.
    M.A.A. Zaini, Y. Amano, M. Machida, J. Hazard. Mater. 180, 552–560 (2010)CrossRefGoogle Scholar
  10. 10.
    A.K. Giri, R. Patel, S. Mandal, Chem. Eng. J. 185, 71–81 (2012)CrossRefGoogle Scholar
  11. 11.
    K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Molavian, Ind. Eng. Chem. Res. 52, 14944–14954 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Feng, S. Zhu, D.R. Martins de Godoi, A.C.S. Samia, D. Scherson, Anal. Chem. 84, 3764–3770 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Chen, X.Q. Zhang, J. Qian, S. Li, X. Jia, H.J. Song, J. Mater. Sci. Mater. Electron. 25, 1381–1387 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, J. Li, L. Zhao, S. Zhang, Y. Huang, X. Wu, X. Wang, Chem. Eng. J. 235, 275–283 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Martínez-Cabanas, M. López-García, J.L. Barriada, R. Herrero, M.E.S. de Vicente, Chem. Eng. J. 301, 83–91 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Zhou, H. Deng, J. Wan, J. Shi, T. Su, Appl. Surf. Sci. 283, 1024–1031 (2013)CrossRefGoogle Scholar
  17. 17.
    V. Urbanova, M. Magro, A. Gedanken, D. Baratella, F. Vianello, R. Zboril, Chem. Mater. 26, 6653–6673 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Biotechnol. Adv. 33, 1162–1176 (2015)CrossRefGoogle Scholar
  19. 19.
    N.S. Rejinold, R.G. Thomas, M. Muthiah, H.J. Lee, Y.Y. Jeong, I.K. Park, R. Jayakumar, J. Biomed. Nanotechnol. 12, 43–55 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Guo, Y. Cheng, Z. Xiang, ACS Sustain. Chem. Eng. 5, 7871–7877 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Chem. Eng. J. 215, 461–471 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Hui, C. Shen, J. Tian, L. Bao, H. Ding, C. Li, Y. Tian, X. Shi, H.J. Gao, Nanoscale. 3, 701–705 (2011)CrossRefGoogle Scholar
  23. 23.
    V. Yathindranath, Z. Sun, M. Worden, L.J. Donald, J.A. Thliveris, D.W. Miller, T. Hegmann, Langmuir. 29, 10850–10858 (2013)CrossRefGoogle Scholar
  24. 24.
    A.A.A.A. Bakheet, X.S. Zhu, Science. 5, 1–7 (2017)CrossRefGoogle Scholar
  25. 25.
    R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, J. Am. Chem. Soc. 128, 5279–5282 (2006)CrossRefGoogle Scholar
  26. 26.
    L. Zhou, C. Gao, W. Xu, ACS Appl. Mater. Inter. 2, 1483–1491 (2010)CrossRefGoogle Scholar
  27. 27.
    X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Chem. Eng. J. 184, 132–140 (2012)CrossRefGoogle Scholar
  28. 28.
    Q.M. Kainz, O. Reiser, Acc. Chem. Res. 47, 667–677 (2014)CrossRefGoogle Scholar
  29. 29.
    U. Kurtan, A. Baykal, Mater. Res. Bull. 60, 79–87 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Bai, H. Hua, W. Fu, J. Wan, X. Cheng, L. Zhuge, L. Xiong, Q. Chen, J. Hazard. Mater. 195, 261–275 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Dai, J. Zou, D. Liu, L. Niu, L. Zhou, Y. Zhou, X. Zhang, Colloids Surf. A 550, 90–98 (2018)CrossRefGoogle Scholar
  32. 32.
    P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, J. Colloid. Interf. Sci. 345, 234–240 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Jeghnou, A. Ouasri, A. Rhandour, M.C. Dhamelincourt, P. Dhamelincourt, A. Mazzah, P. Roussel, J. Raman Spectrosc. 36, 1023–1028 (2005)CrossRefGoogle Scholar
  34. 34.
    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534–534 (2011)CrossRefGoogle Scholar
  35. 35.
    S.H. Liu, C.L. Wei, I.H. Chiang, C.Y. Liao, C. Gouda, R. Arumugaperumal, W.T. Chuang, J.J. Lee, Y.C. Chen, H.C. Lin, RSC Adv. 5, 99732–99738 (2015)CrossRefGoogle Scholar
  36. 36.
    Y.X. Ma, Y.L. Kou, D. Xing, P.S. Jin, W.J. Shao, X. Li, X.Y. Du, J. Hazard. Mater. 340, 407–416 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Liu, Y. Wang, S. Zhou, S. Lou, L. Yuan, T. Gao, X. Wu, X. Shi, K. Wang, ACS Appl. Mater. Inter. 4, 4913–4920 (2012)CrossRefGoogle Scholar
  38. 38.
    X. Ma, B. Zhang, Q. Cong, X. He, M. Gao, G. Li, Mater. Chem. Phys. 178, 88–97 (2016)CrossRefGoogle Scholar
  39. 39.
    W.W. Ngah, M.A.K.M. Hanafiah, J. Environ. Sci. 20, 1168–1176 (2008)CrossRefGoogle Scholar
  40. 40.
    J.P. Simonin, Chem. Eng. J. 300, 254–263 (2016)CrossRefGoogle Scholar
  41. 41.
    Z.Y. Lin, Y.X. Zhang, Y.L. Chen, H. Qian, Chem. Eng. J. 200–202, 104–112 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Xu, Y. Zhao, F. Zheng, Y. Zhang, J. Mater. Sci. 51, 2550–2557 (2016)CrossRefGoogle Scholar
  43. 43.
    X. Luo, C. Wang, S. Luo, R. Dong, X. Tu, G. Zeng, Chem. Eng. J. 187, 45–52 (2012)CrossRefGoogle Scholar
  44. 44.
    J.C. Vieira, L.C. Soares, R.E.S. Froes-Silva, Microchem. J. 137, 324–328 (2017)CrossRefGoogle Scholar
  45. 45.
    B. Guo, F. Deng, Y. Zhao, X. Luo, S. Luo, C. Au, Appl. Surf. Sci. 292, 438–446 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Liu Danyang
    • 1
  • Niu Lanli
    • 1
  • Dai Yimin
    • 1
    Email author
  • Zou Jiaqi
    • 1
  • Chen Tianxiao
    • 1
  • Zhou Yi
    • 1
  1. 1.School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and TechnologyChangshaPeople’s Republic of China

Personalised recommendations