Advertisement

Study of gamma-ray radiation effects on the passivation properties of atomic layer deposited Al2O3 on silicon using deep-level transient spectroscopy

  • Zhe Chen
  • Peng DongEmail author
  • Meng Xie
  • Yun Li
  • Xuegong Yu
  • Yao Ma
Article
  • 25 Downloads

Abstract

Aluminum oxide (Al2O3) has emerged as a potential dielectric material and exhibited an excellent passivation property on silicon surface. However, such oxide layer is extremely sensitive to γ-ray irradiation. In this work, deep-level transient spectroscopy has been applied to study the influence of γ-ray irradiation on the passivation properties of atomic layer deposited Al2O3 on silicon. It is shown that γ-ray irradiation leads to a significant increase of interface state density (Dit). Meanwhile, its energy distribution is broadened and shifts deeper with respect to the top of valence band, and therefore evolves into more efficient recombination centers for carriers. Besides, capacitance–voltage (C–V) curves shows a progressive shift toward the negative voltages with increased radiation doses. This indicates the hole trapping in Al2O3, which can neutralize the negatively charged defects and therefore degrade its field-effect passivation. Hence, the passivation quality of Al2O3 on silicon deteriorates significantly after γ-ray radiation.

Notes

Acknowledgements

This work was supported by Science Challenge Project (No. TZ2016003-1), National Natural Science Foundation of China (Nos. 61604139 and 51532007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests and agree to the submission of this paper.

Research involving human and animal participants

This research involves no human participants and/or animals.

References

  1. 1.
    F. Werner, B. Veith, V. Tiba, P. Poodt, F. Roozeboom, R. Brendel, J. Schmidt, Appl. Phys. Lett. 97, 162103 (2010)CrossRefGoogle Scholar
  2. 2.
    L.E. Black, K.R. McIntosh, Appl. Phys. Lett. 100, 202107 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Richter, J. Benick, M. Hermle, S.W. Glunz, Appl. Phys. Lett. 104, 061606 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Bansal, B.R. Singh, IEEE J. J Photovolt. 1382, 6 (2016)Google Scholar
  5. 5.
    G.G. Untila, T.N. Kost, A.B. Chebotareva, A.S. Stepanov, M.B. Zaks, A.M. Sitnikov, O.I. Solodukha, Sol. Energy 98, 440–447 (2013)CrossRefGoogle Scholar
  6. 6.
    A.U. Rehman, M.Z. Iqbal, M.F. Bhopal, M.F. Khan, F. Hussain, J. Iqbal, M. Khan, S.H. Lee, Sol. Energy 166, 90–97 (2018)CrossRefGoogle Scholar
  7. 7.
    B. Veith-Wolf, R. Witteck, A. Morlier, H. Schulte-Huxel, J. Schmidt, in IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC (2017), pp. 15Google Scholar
  8. 8.
    B. Hoex, J.J.H. Gielis, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 104, 113703 (2008)CrossRefGoogle Scholar
  9. 9.
    P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, R. Preu, Appl. Phys. Lett. 95, 151502 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Werner, B. Veith, D. Zielke, L. Kühnemund, C. Tegenkamp, M. Seibt, R. Brendel, J. Schmidt, J. Appl. Phys. 109, 113701 (2011)CrossRefGoogle Scholar
  11. 11.
    C.C. Lin, J.G. Hwu, Nanoscale 5, 8090–8097 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Manchanda, M.D. Morris, M.L. Green, R.B. van Dover, F. Klemens, T.W. Sorsch, P.J. Silverman, G. Wilk, B. Busch, S. Aravamudhan, Microelectron. Eng. 59, 351–359 (2001)CrossRefGoogle Scholar
  13. 13.
    O. Auciello, W. Fan, B. Kabius, S. Saha, J.A. Carlisle, R.P.H. Chang, C. Lopez, E.A. Irene, R.A. Baragiola, Appl. Phys. Lett. 86, 042904 (2005)CrossRefGoogle Scholar
  14. 14.
    P.J. McWhorter, P.S. Winokur, Appl. Phys. Lett. 48, 133 (1986)CrossRefGoogle Scholar
  15. 15.
    G. Kapila, B. Kaczer, A. Nackaerts, N. Collaert, G.V. Groeseneken, IEEE Electron Device Lett. 28, 232–234 (2007)CrossRefGoogle Scholar
  16. 16.
    T.R. Oldham, F.B. McLean, IEEE Trans. Nucl. Sci. 50, 483–499 (2003)CrossRefGoogle Scholar
  17. 17.
    J.M. Rafí, F. Campabadal, H. Ohyama, K. Takakura, I. Tsunoda, M. Zabala, O. Beldarrain, M.B. González, H. García, H. Castán, A. Gómez, S. Dueñas, Solid State Electron. 79, 65–74 (2013)CrossRefGoogle Scholar
  18. 18.
    P. Laha, I. Banerjee, P.K. Barhai, A.K. Das, V.N. Bhoraskar, S.K. Mahapatra, Nucl. Instrum. Methods B 283, 9–14 (2012)CrossRefGoogle Scholar
  19. 19.
    P. Laha, I. Banerjee, A. Bajaj, P. Chakraborty, P.K. Barhai, S.S. Dahiwale, A.K. Das, V.N. Bhoraskar, D. Kim, S.K. Mahapatra, Radiat. Phys. Chem. 81, 1600–1605 (2012)CrossRefGoogle Scholar
  20. 20.
    C. Gong, E. Simoen, N.E. Posthuma, E.V. Kerschaver, J. Poortmans, R. Mertens, J. Phys. D 43, 485301 (2010)CrossRefGoogle Scholar
  21. 21.
    A.V.P. Coelho, M.C. Adam, H. Boudinov, J. Phys. D 44, 305303 (2011)CrossRefGoogle Scholar
  22. 22.
    E. Simoen, C. Gong, N.E. Posthuma, E. Van Kerschaver, J. Poortmans, R. Mertens, J. Electrochem. Soc. 158, H612–H617 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Dingemans, W.M.M. Kessels, J. Vac. Sci. Technol. A 30, 040802 (2012)CrossRefGoogle Scholar
  24. 24.
    I.S. Jeon, J. Park, D. Eom, C.S. Hwang, H.J. Kim, C.J. Park, H.Y. Cho, J.H. Lee, N.I. Lee, H.K. Kang, Appl. Phys. Lett. 82, 1066 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Ozder, I. Atilgan, B. Katircioglu, Semicond. Sci. Technol. 10, 1510–1519 (1995)CrossRefGoogle Scholar
  26. 26.
    E. Simoen, D. Visalli, M. Van Hove, M. Leys, G. Borghs, J. Phys. D 44, 475104 (2011)CrossRefGoogle Scholar
  27. 27.
    J.F. Conley, P.M. Lenahan, Appl. Phys. Lett. 62, 40 (1993)CrossRefGoogle Scholar
  28. 28.
    E. Cartier, J.H. Stathis, D.A. Buchanan, Appl. Phys. Lett. 63, 1510 (1993)CrossRefGoogle Scholar
  29. 29.
    D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, R.L. Pease, G.W. Dunham, IEEE Trans. Nucl. Sci. 55, 2986–2991 (2008)CrossRefGoogle Scholar
  30. 30.
    B.R. Tuttle, D.R. Hughart, R.D. Schrimpf, D.M. Fleetwood, S.T. Pantelides, IEEE Trans. Nucl. Sci. 57, 3046–3053 (2010)Google Scholar
  31. 31.
    N.L. Rowsey, M.E. Law, R.D. Schrimpf, D.M. Fleetwood, B.R. Tuttle, S.T. Pantelides, IEEE Trans. Nucl. Sci. 58, 2937–2944 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhe Chen
    • 1
  • Peng Dong
    • 1
    Email author
  • Meng Xie
    • 2
  • Yun Li
    • 3
  • Xuegong Yu
    • 2
  • Yao Ma
    • 3
  1. 1.Microsystem & Terahertz Research Center and Institute of Electronic EngineeringChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  2. 2.State Key Laboratory of Si Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Department of PhysicsSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations