Graphene oxide incorporated polypyrrole composite materials: optimizing the electropolymerization conditions for improved supercapacitive properties

  • Haihan ZhouEmail author
  • Wenyu Zhang
  • Yunzhen Chang
  • Dongying Fu


For supercapacitor electrode materials, polypyrrole (PPy) usually shows compact microstructure due to its dense growth. To enhance its electrochemical capacitive properties by facilitating the dispersed distribution of PPy, we have incorporated graphene oxide (GO) nanosheets into PPy via facile electrochemical polymerization. And meanwhile, the effect of electropolymerization conditions (12 different conditions) on the electrochemical properties of the prepared PPy/GO composites is investigated detailedly. Three important results are obtained by electrochemical measurements. First, the electrochemical properties of PPy electrodes are remarkably boosted by the incorporation of GO. Second, galvanostatically polymerized PPy/GO composites exhibit better electrochemical performances than potentiostatically polymerized PPy/GO. Third, the galvanostatically polymerized PPy/GO composite with 1 mA cm−2 shows the best electrochemical capacitive performances, achieving high specific capacitance of 154.5 mF cm−2, good rate capability, and excellent cycle performance, showing 107.5% of initial capacitance after 5000 cycles. This study demonstrates that the electropolymerization conditions significantly affect the electrochemical properties of the prepared PPy/GO composites, and the electrodes prepared under the optimal condition are very promising for high-efficiency supercapacitor applications.



This work was supported by the National Natural Science Foundation of China (21601113), China Postdoctoral Science Foundation (2015M571283), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2017112), and the Fund for Shanxi “1331 Project” Key Innovative Research Team.


  1. 1.
    Y.Z. Liao, H.G. Wang, M.F. Zhu, A. Thomas, Adv. Mater. 30, 1705710 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.Y. Lan, H.Y. Zhao, Y. Zong, X.H. Li, Y. Sun, J. Feng, Y. Wang, X.T. Zheng, Y.P. Du, Nanoscale 10, 11775–11781 (2018)CrossRefGoogle Scholar
  3. 3.
    Z.C. Pan, Y.C. Jiang, P.Y. Yang, Z.Y. Wu, W.C. Tian, L. Liu, Y. Song, Q.F. Gu, D.L. Sun, L.F. Hu, ACS Nano 12, 2968–2979 (2018)CrossRefGoogle Scholar
  4. 4.
    A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, J. Mater. Sci.: Mater. Electron. 29, 16401–16409 (2018)Google Scholar
  5. 5.
    J.Y. Tian, H.Y. Zhang, Z.H. Li, ACS Appl. Mater. Interfaces 10, 29511–29520 (2018)CrossRefGoogle Scholar
  6. 6.
    J.X. Hao, S.L. Peng, H.Q. Li, S. Dang, T.F. Qin, Y.X. Wen, J.J. Huang, F. Ma, D.Q. Gao, F. Li, G.Z. Cao, J. Mater. Chem. A 6, 16094–16100 (2018)CrossRefGoogle Scholar
  7. 7.
    P. Naveenkumar, G. Paruthimal Kalaignan, S. Arulmani, S. Anandan, J. Mater. Sci.: Mater. Electron. 29, 16853–16863 (2018)Google Scholar
  8. 8.
    X.T. Xu, J. Tang, H.Y. Qian, S.J. Hou, Y. Bando, M.S.A. Hossain, L.K. Pan, Y. Yamauchi, ACS Appl. Mater. Interfaces 9, 38737–38744 (2017)CrossRefGoogle Scholar
  9. 9.
    Y.X. Chen, W.J. Ma, K.F. Cai, X.W. Yang, C.J. Huang, Electrochim. Acta 246, 615–624 (2017)CrossRefGoogle Scholar
  10. 10.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Huang, M.S. Zhu, Z.X. Pei, Y. Huang, H.Y. Geng, C.Y. Zhi, ACS Appl. Mater. Interfaces 8, 2435–2440 (2016)CrossRefGoogle Scholar
  12. 12.
    D.P. Dubal, N.R. Chodankar, Z. Caban-Huertas, F. Wolfart, M. Vidotti, R. Holze, C.D. Lokhande, P. Gomez-Romero, J. Power Sources 308, 158–165 (2016)CrossRefGoogle Scholar
  13. 13.
    L.Y. Yuan, C.Y. Wan, X.R. Ye, F.H. Wu, Electrochim. Acta 213, 115–123 (2016)CrossRefGoogle Scholar
  14. 14.
    X.Y. Fan, X.L. Wang, G. Li, A.P. Yu, Z.W. Chen, J. Power Sources 326, 357–364 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje, M.A. Atieh, J. Power Sources 352, 174–186 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Jian, H.M. Yang, J.G. Li, E.H. Zhang, L.L. Cao, Z.H. Liang, Electrochim. Acta 228, 483–493 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, ACS Appl. Mater. Interfaces 9, 8880–8890 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Li, H.Q. Xie, Y. Li, J. Power Sources 241, 388–395 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Konwer, R. Boruah, S.K. Dolui, J. Electron. Mater. 40, 2248–2255 (2011)CrossRefGoogle Scholar
  20. 20.
    I.M.D. Salas, Y.N. Sudhakar, M. Selvakumar, Appl. Surf. Sci. 296, 195–203 (2014)CrossRefGoogle Scholar
  21. 21.
    C.Z. Zhu, J.F. Zhai, D. Wen, S.J. Dong, J. Mater. Chem. 22, 6300–6306 (2012)CrossRefGoogle Scholar
  22. 22.
    L.Q. Fan, G.J. Liu, J.H. Wu, L. Liu, J.M. Lin, Y.L. Wei, Electrochim. Acta 137, 26–33 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Bora, S.K. Dolui, Polymer 53, 923–932 (2012)CrossRefGoogle Scholar
  24. 24.
    Y.J. Zou, Q.Y. Wang, C.L. Xiang, Z. She, H.L. Chu, S.J. Qiu, F. Xu, S.S. Liu, C.Y. Tang, L.X. Sun, Electrochim. Acta 188, 126–134 (2016)CrossRefGoogle Scholar
  25. 25.
    G.A.M. Ali, M.M. Yusoff, Y.H. Ng, H.N. Lim, K.F. Chong, Curr. Appl. Phys. 15, 1143–1147 (2015)CrossRefGoogle Scholar
  26. 26.
    F. Wolfart, D.P. Dubal, M. Vidotti, R. Holze, P. Gomez-Romero, J. Solid State Electrochem. 20, 901–910 (2016)CrossRefGoogle Scholar
  27. 27.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  28. 28.
    Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, J. Am. Chem. Soc. 130, 5856–5857 (2008)CrossRefGoogle Scholar
  29. 29.
    C.J. Chen, Y. Zhang, Y.J. Li, J.Q. Dai, J.W. Song, Y.G. Yao, Y.H. Gong, I. Kierzewski, J. Xie, L.B. Hu, Energy Environ. Sci. 10, 538–545 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Chen, Y.H. Li, Q.J. Du, Z.H. Wang, Y.Z. Xia, E. Yedinak, J. Lou, L.J. Ci, Carbohydr. Polym. 155, 345–353 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Bagherzadeh, Z.S. Ghahfarokhi, E.G. Yazdi, RSC Adv. 6, 22007–22015 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Kumar, R.K. Singh, H.K. Singh, P. Srivastava, R. Singh, J. Power Sources 246, 800–807 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Singh, A. Chandra, J. Appl. Electrochem. 43, 773–782 (2013)CrossRefGoogle Scholar
  34. 34.
    H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, ACS Nano 3, 2653–2659 (2009)CrossRefGoogle Scholar
  35. 35.
    H. Zhou, T. Ni, X.T. Qing, X.X. Yue, G. Li, Y. Lu, RSC Adv. 4, 4134–4139 (2014)CrossRefGoogle Scholar
  36. 36.
    R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, P.S. Lee, Adv. Energy Mater. 6, 1501833 (2016)CrossRefGoogle Scholar
  37. 37.
    B.G. Lee, S.H. Lee, J.R. Yoon, H.J. Ahn, Electrochim. Acta 263, 555–560 (2018)CrossRefGoogle Scholar
  38. 38.
    A.A. Ensafi, N. Ahmadi, B. Rezaei, A. Abdolmaleki, M. Mahmoudian, Energy 164, 707–721 (2018)CrossRefGoogle Scholar
  39. 39.
    C.J. Raj, B.C. Kim, W.J. Cho, W.G. Lee, S.D. Jung, Y.H. Kim, S.Y. Park, K.H. Yu, ACS Appl. Mater. Interfaces 7, 13405–13414 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Szkoda, K. Trzcinski, J. Rysz, M. Gazda, K. Siuzdak, A. Lisowska-Oleksiak, Solid State Ionics 302, 197–201 (2017)CrossRefGoogle Scholar
  41. 41.
    X.X. Li, X.H. Deng, Q.J. Li, S. Huang, K. Xiao, Z.Q. Liu, Y. Tong, Electrochim. Acta 264, 46–52 (2018)CrossRefGoogle Scholar
  42. 42.
    R.R. Wang, Q. Wu, X.H. Zhang, Z.H. Yang, L.J. Gao, J.F. Ni, O.K.C. Tsui, J. Mater. Chem. A 4, 12602–12608 (2016)CrossRefGoogle Scholar
  43. 43.
    X.F. Lu, X.Y. Chen, W. Zhou, Y.X. Tong, G.R. Li, ACS Appl. Mater. Interfaces 7, 14843–14850 (2015)CrossRefGoogle Scholar
  44. 44.
    M. Yang, S.B. Hong, J.H. Yoon, D.S. Kim, S.W. Jeong, D.E. Yoo, T.J. Lee, K.G. Lee, S.J. Lee, B.G. Choi, ACS Appl. Mater. Interfaces 8, 22220–22226 (2016)CrossRefGoogle Scholar
  45. 45.
    X.L. Mao, W.Y. Yang, X. He, Y. Chen, Y.T. Zhao, Y.J. Zhou, Y.J. Yang, J.H. Xu, Mater. Sci. Eng. B 216, 16–22 (2017)CrossRefGoogle Scholar
  46. 46.
    K.Y. Shi, I. Zhitomirsky, J. Colloid Interface Sci. 407, 474–481 (2013)CrossRefGoogle Scholar
  47. 47.
    M.H. Yu, Y.X. Zeng, C. Zhang, X.H. Lu, C.H. Zeng, C.Z. Yao, Y.Y. Yang, Y.X. Tong, Nanoscale 5, 10806–10810 (2013)CrossRefGoogle Scholar
  48. 48.
    Q.Q. Zhou, Y.R. Li, L. Huang, C. Li, G.Q. Shi, J. Mater. Chem. A 2, 17489–17494 (2014)CrossRefGoogle Scholar
  49. 49.
    Y.R. Zhu, Z.B. Wu, M.J. Jing, H.S. Hou, Y.C. Yang, Y. Zhang, X.M. Yang, W.X. Song, X.N. Jia, X.B. Ji, J. Mater. Chem. A 3, 866–877 (2015)CrossRefGoogle Scholar
  50. 50.
    R.B. Rakhi, M.L. Lekshmi, Electrochim. Acta 231, 539–548 (2017)CrossRefGoogle Scholar
  51. 51.
    J.S. Li, W.B. Lu, Y.S. Yan, T.W. Chou, J. Mater. Chem. A 5, 11271–11277 (2017)CrossRefGoogle Scholar
  52. 52.
    Y.M. Li, H.Q. Ye, J.H. Chen, N. Wang, R. Sun, C.P. Wong, J. Alloy. Compd. 737, 731–739 (2018)CrossRefGoogle Scholar
  53. 53.
    H.L. Wang, C.M.B. Holt, Z. Li, X.H. Tan, B.S. Amirkhiz, Z.W. Xu, B.C. Olsen, T. Stephenson, D. Mitlin, Nano Res. 5, 605–617 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Haihan Zhou
    • 1
    Email author
  • Wenyu Zhang
    • 1
  • Yunzhen Chang
    • 1
  • Dongying Fu
    • 2
  1. 1.Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular ScienceShanxi UniversityTaiyuanChina
  2. 2.Institute of Crystalline MaterialsShanxi UniversityTaiyuanChina

Personalised recommendations