Advertisement

Influences of reaction temperature, holding time and S/Zn molar ratio on structure, morphology, optical and electrical properties of ZnS nanoparticles synthesized by hydrothermal method

  • Xiaoli Zhou
  • Qinghua YangEmail author
  • Huanping Wang
  • Feifei Huang
  • Junjie Zhang
  • Shiqing XuEmail author
Article
  • 19 Downloads

Abstract

ZnS nanoparticles were synthesized by hydrothermal method. The influences of reaction temperature, holding time and S/Zn molar ratio on the structure, morphology, optical and electrical properties of ZnS nanoparticles were studied systematically at the range of 90 °C to 180 °C, 6 h to 15 h and 1:2 to 2.5:1, respectively. The results indicate that the reaction temperature, holding time and S/Zn molar ratio have no influence on phase structure. All the samples belong to zinc blende cubic structure of ZnS. However, the reaction temperature has strong influences on the growth of crystals, optical and electrical properties due to LaMer theory and two-stage growth kinetics. When the reaction temperature increases from 90 °C to 180 °C, the crystallite sizes increase from 7.0 nm to 9.7 nm and the average particle sizes decrease from 21 nm to 14 nm; the emission peaks are red shifted from 445 nm to 460 nm and the emission intensity is increased by 4.4 times; the dielectric constant and dielectric loss decrease from 4.86 to 4.71 and 2.86 × 104 to 2.70 × 104, respectively. While, the holding time has slight influences on the growth of crystals, optical and electrical properties. And the emission band and emission intensity of ZnS nanoparticles can be adjusted by the S/Zn molar ratio. When the S/Zn molar ratio is less than 1:1 or equal to 1:1, the emission bands range from 400 nm to 600 nm centered at ~ 450 nm. When the S/Zn molar ratio is greater than 1:1, the emission bands range from 400 nm to 700 nm centered at ~ 540 nm.

Notes

Acknowledgements

This work was financially supported by the project of Natural Science Foundation Zhejiang Provincial (LY15F050005 and LZ14B010001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    H. Jeong, H.M. Oh, S. Bang et al., Nano Lett. 16, 1858 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Martí, N. López, E. Antolín et al., Thin Solid Films 511–512, 638 (2006)CrossRefGoogle Scholar
  3. 3.
    M.R. Hoffmann, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  4. 4.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, A. Sobhani, Z. Zinatloo-Ajabshir, J. Alloys Compd. 767, 1164 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Wu, H. Liu, J. Liu et al., Nat. Biotechnol. 21, 41 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, Appl. Opt. 25, 1417 (1986)CrossRefGoogle Scholar
  7. 7.
    M.C. Divyasree, K. Chandrasekharan, Opt. Mater. 67, 119 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Qiu, D. Qiu, L. Cai et al., Mater. Lett. 198, 23 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, Y. Zhang, G. Qin et al., Int. J. Nanomed. 12, 1927 (2017)CrossRefGoogle Scholar
  10. 10.
    V.G. Bessergenev, E.N. Ivanova, Y.A. Kovalevskaya et al., Mater. Res. Bull. 30, 1393 (1995)CrossRefGoogle Scholar
  11. 11.
    N. Bansal, G.C. Mohanta, K. Singh, Ceram. Int. 43, 7193 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. (2017), 7(1), 22CrossRefGoogle Scholar
  13. 13.
    P.V. Ben, B.H. Van, VNU J. Sci. Math. Phys. 33, 81 (2017)Google Scholar
  14. 14.
    S.K. Panda, S. Chaudhuri, J. Colloid Interface Sci. 313, 338 (2007)CrossRefGoogle Scholar
  15. 15.
    F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, Z. Hamidi, CrystEngComm 14, 7338 (2012)CrossRefGoogle Scholar
  16. 16.
    Z. Ren, H. Yang, L. Shen, S.D. Han, J. Mater. Sci. Mater. Electron. 19, 1 (2008)CrossRefGoogle Scholar
  17. 17.
    T.I. Chanu, D. Samanta, A. Tiwari, S. Chatterjee, Appl. Surf. Sci. 391, 548 (2016)CrossRefGoogle Scholar
  18. 18.
    G.O. Siqueira, T. Matencio, S.H. Da et al., Phys. Chem. Chem. Phys. 15, 6796 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, L. Yang, Cryst. Res. Technol. 43, 1022 (2010)CrossRefGoogle Scholar
  20. 20.
    X. Yu, L.Y. Cao, J.F. Huang, L. Jia, F. Jie, C.Y. Yao, J. Alloys Compd. 549, 1 (2013)CrossRefGoogle Scholar
  21. 21.
    N. Arbi, I.B. Assaker, M. Gannouni, A. Kriaa, R. Chtourou, Mater. Sci. Semicond. Process. 40, 873 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Qu, L. Cao, G. Su, W. Liu, Y. Sun, B. Dong, Adv. Mater. Res. 79–82, 589 (2009)CrossRefGoogle Scholar
  23. 23.
    T.T.Q. Hoa, N.D. The, S. Mcvitie et al., Opt. Mater. 33, 308 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 785 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Liu, L. Yang, Y. Pu, D. Xiao, J. Zhu Mater. Lett. 66, 121 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Beshkar, S. Zinatlooajabshir, S. Bagheri, M. Salavatiniasari, PLoS ONE 12, e0158549 (2017)CrossRefGoogle Scholar
  27. 27.
    Z.Q. Li, J.H. Shi, Q.Q. Liu, Z.A. Wang, Z. Sun, S.M. Huang, Appl. Surf. Sci. 257, 122 (2010)CrossRefGoogle Scholar
  28. 28.
    B.D. Cullity, Am. J. Phys. 25, 50 (1957)CrossRefGoogle Scholar
  29. 29.
    X. Zhou, Q. Yang, H. Wang, F. Huang, J. Zhang, S. Xu, Adv. Powder Technol. 29, 977 (2018)CrossRefGoogle Scholar
  30. 30.
    A.S. Kabalnov, E.D. Shchukin, Adv. Colloid Interface 38, 69 (1992)CrossRefGoogle Scholar
  31. 31.
    T. Zargar, A. Kermanpur, Ceram. Int. 43, 5794 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, J. Clean Prod. 198, 11 (2018)CrossRefGoogle Scholar
  33. 33.
    M.B. Mohamed, K.Z.I. †, A.Stephan Link, M.A. Elsayed, J. Phys. Chem. B 102, 9370 (1998)CrossRefGoogle Scholar
  34. 34.
    V.K. Lamer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950)CrossRefGoogle Scholar
  35. 35.
    R. Sahraei, S. Darafarin, J. Lumin. 149, 170 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Murugadoss, J. Lumin. 132, 2043 (2012)CrossRefGoogle Scholar
  37. 37.
    T.Q.H. Tran, L. Van Vu, T.D. Canh, N.N. Long, J. Phys. Conf. Ser. (2009) p. 012081Google Scholar
  38. 38.
    J. Liu, J. Ma, Y. Liu et al., J. Alloys Compd. 486, L40 (2009)CrossRefGoogle Scholar
  39. 39.
    Z. Li, J. Wang, X. Xu, X. Ye, Mater. Lett. 62, 3862 (2008)CrossRefGoogle Scholar
  40. 40.
    P. Iranmanesh, S. Saeednia, N. Khorasanipoor, Mater. Sci. Semicond. Process. 68, 193 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouChina

Personalised recommendations