Facile ionothermal synthesis of TiO2 nanorods for photocatalytic H2 generation

  • K. N. Manukumar
  • G. NagarajuEmail author
  • D. Praveen Kumar
  • M. V. Shankar


Facile ionothermal method has been employed to synthesize One-dimensional (1-D) mixed phase TiO2 nanorods (NRs) using ionic liquid as the reaction medium. The PXRD pattern reveals the formation of mixed phase TiO2 having 68.3% of anatase and 31.7% rutile phase with average crystallite size of ~ 10 nm. TEM images depict the average thickness of TiO2 NRs are in the range 50–100 nm. The 1-D mixed phase TiO2 NRs showed 5 times better hydrogen production activity than P-25 in the water-glycerol mixture under solar light irradiation. The reason could be the synergetic effect and unique optical properties of 1-D anatase–rutile TiO2 mixed-phase system.



Dr. G. Nagaraju and Manukumar K.N. greatly thank ISRO-RESPOND (Project No. ISRO/RES/3/661/2014-15 Dated 14-07-2014) Govt. of India for sanctioning the project and financial assistance. Also acknowledges DST-Nanomission (SR/NM/NS-1262/2013), Govt. of India, New Delhi, for financial support to procure X-ray diffractoemter.


  1. 1.
    C. Liu, N.P. Dasgupta, P. Yang, Chem. Mater. 26, 415–422 (2013)CrossRefGoogle Scholar
  2. 2.
    P.V. Kamat, J. Bisquert, J. Phys. Chem. C. 117, 14873–14875 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Fujishima, K. Honda, Nature. 238, 37–38 (1972)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, P. Zhou, J. Liu, J. Yu, Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Nakata, A. Fujishima, J. Photochem. Photobiol. C. 13, 169–189 (2012)CrossRefGoogle Scholar
  6. 6.
    X. Huang, L. Meng, M. Du, Y. Li, J. Mater. Sci. 27, 7222–7226 (2016)Google Scholar
  7. 7.
    G. Nagaraj, A.D. Raj, A.A. Irudayaraj, J. Mater. Sci. 29, 4373–4381 (2018)Google Scholar
  8. 8.
    S. Feng, A. Runa, L. Liu, J. Wang, P. Su, T. Liu, S. Su, G. Zhu, W. Fu, H. Yang, J. Mater. Sci. 29, 16903–16910 (2018)Google Scholar
  9. 9.
    A.A. Navab, A. Nemati, A.A. Navab, H.M.M. Abad, in AIP Conference Proceedings, AIP Publishing (2018)
  10. 10.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Kuwabata, T. Tsuda, T. Torimoto, J. Phys. Chem. Lett. 1, 3177–3188 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Taubert, Z. Li, Dalton Trans. (2007) Google Scholar
  13. 13.
    M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem. Int. Ed. 43, 4988–4992 (2004)CrossRefGoogle Scholar
  14. 14.
    M.V. Fedorov, A.A. Kornyshev, Chem. Rev. 114, 2978–3036 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Kaur, V. Singh, N. J. Chem. 41, 2844–2868 (2017)CrossRefGoogle Scholar
  16. 16.
    W. Zheng, X. Liu, Z. Yan, L. Zhu, ACS Nano. 3, 115–122 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K.Q. Zhang, Y. Lai, Z. Lin, Int. J. Hydrog. Energy. 42, 8418–8449 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Qiu, F. Ouyang, R. Zhu, Int. J. Hydrog. Energy. 42, 11364–11371 (2017)CrossRefGoogle Scholar
  19. 19.
    G. Song, C. Luo, Q. Fu, C. Pan, RSC Adv. 6, 84035–84041 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Bagheri, N.M. Julkapli, Rev. Inorg. Chem. 37, 11–28 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Hou, L. Wang, F. Gao, G. Wei, J. Zheng, B. Tang, W. Yang, Int. J. Hydrog. Energy. 39, 6837–6844 (2014)CrossRefGoogle Scholar
  22. 22.
    U. Shaislamov, B.L. Yang, Int. J. Hydrog. Energy. 38, 14180–14188 (2013)CrossRefGoogle Scholar
  23. 23.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A. 115, 13211–13241 (2011)CrossRefGoogle Scholar
  24. 24.
    G. Nagaraju, T.N. Ravishankar, K. Manjunatha, S. Sarkar, H. Nagabhushana, R. Goncalves, J. Dupont, Mater. Lett. 109, 27–30 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Krishnappa, R.T. Nanjundaiah, G. Renato, D. Jairton, S. Sharma, R. Thippeswamy, G. Nagaraju, Int. J. Latest Technol. Eng. Manag. Appl. Sci. (2014) ISSN 2278–2540Google Scholar
  26. 26.
    G. Nagaraju, Udayabhanu, J.P. Shubha, K. Manjunath, J. Dupont, Int. J. Hydrog. Energy. 43, 4028–4035 (2018)CrossRefGoogle Scholar
  27. 27.
    T.N. Ravishankar, T. Ramakrishnappa, H. Nagabhushana, V.S. Souza, J. Dupont, G. Nagaraju, N. J. Chem. 39, 1421–1429 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, L. Li, X. Huang, Q. Li, G. Li, RSC Adv. 5, 34302–34313 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Zhang, J.F. Banfield, J. Phys. Chem. B. 104, 3481–3487 (2000)CrossRefGoogle Scholar
  30. 30.
    J. Kiefer, J. Fries, A. Leipertz, Appl. Spectrosc. 61, 1306–1311 (2007)CrossRefGoogle Scholar
  31. 31.
    H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37, 33–38 (2005)CrossRefGoogle Scholar
  32. 32.
    K. Huo, X. Zhang, J. Fu, G. Qian, Y. Xin, B. Zhu, H. Ni, P.K. Chu, J. Nanosci. Nanotechnol. 9, 3341–3346 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Šćepanović, M. Grujić-Brojčin, M. Mirić, Z. Dohčević-Mitrović, Z.V. Popović, Acta Phys. Pol. A. 116, 603–606 (2009)CrossRefGoogle Scholar
  34. 34.
    A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. fís. 53, 18–22 (2007)Google Scholar
  35. 35.
    V.P. Kubelka, Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  36. 36.
    C. Shivakumara, R. Saraf, P. Halappa, Dyes Pigment. 126, 154–164 (2016)CrossRefGoogle Scholar
  37. 37.
    M.G. Ju, G. Sun, J. Wang, Q. Meng, W.Z. Liang, ACS Appl. Mater. Interfaces. 6, 12885–12892 (2014)CrossRefGoogle Scholar
  38. 38.
    D. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C. Richard, A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798–801 (2013)CrossRefGoogle Scholar
  39. 39.
    R.A. Rather, S. Singh, B. Pal Solar Energy Mater. Solar Cells. 160, 463–469 (2017)CrossRefGoogle Scholar
  40. 40.
    D.P. Kumar, N.L. Reddy, M.M. Kumari, B. Srinivas, V.D. Kumari, B. Sreedhar, V. Roddatis, O. Bondarchuk, M. Karthik, B. Neppolian, M.V. Shankar, Solar Energy Mater. Solar Cells. 136, 157–166 (2015)CrossRefGoogle Scholar
  41. 41.
    Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu, X. Miao, P. Feng, Z. Sun, Nano Res. 8, 4061–4071 (2015)CrossRefGoogle Scholar
  42. 42.
    D.P. Kumar, V.D. Kumari, M. Karthik, M. Sathish, M.V. Shankar, Solar Energy Mater. Solar Cells. 163, 113–119 (2017)CrossRefGoogle Scholar
  43. 43.
    P. Khemthong, P. Photai, N. Grisdanurak, Int. J. Hydrog. Energy. 38, 15992–16001 (2013)CrossRefGoogle Scholar
  44. 44.
    M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al-Dey, Y. Lai, J. Mater. Chem. A. 4, 6772–6801 (2016)CrossRefGoogle Scholar
  45. 45.
    R.S. Chen, C.A. Chen, W.C. Wang, H.Y. Tsai, Y.S. Huang, Appl. Phys. Lett. 99, 222107 (2011)CrossRefGoogle Scholar
  46. 46.
    R.S. Chen, C.A. Chen, H.Y. Tsai, W.C. Wang, Y.S. Huang, Appl. Phys. Lett. 100, 123108 (2012)CrossRefGoogle Scholar
  47. 47.
    R.S. Chen, Y.L. Liu, C.H. Chan, Y.S. Huang, Appl. Phys. Lett. 105, 153107 (2014)CrossRefGoogle Scholar
  48. 48.
    R.S. Chen, C.A. Chen, H.Y. Tsai, W.C. Wang, Y.S. Huang, J. Phys. Chem. C. 116, 4267–4272 (2012)CrossRefGoogle Scholar
  49. 49.
    U.K. Thakur, A.M. Askar, R. Kisslinger, B.D. Wiltshire, P. Kar, K. Shankar, Nanotechnology. 28, 274001 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Mohammadpour, B. Wiltshire, Y. Zhang, S. Farsinezhad, A. Askar, R. Kisslinger, Y. Ren, P. Kar, K. Shankar, Nanotechnology. 28, 144001 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Mohammadpour, S. Farsinezhad, B.D. Wiltshire, K. Shankar, Phys. Status Solidi Rapid Res. Lett. 8, 512–6 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. N. Manukumar
    • 1
  • G. Nagaraju
    • 1
    Email author
  • D. Praveen Kumar
    • 2
  • M. V. Shankar
    • 2
  1. 1.Department of ChemistrySiddaganga Institute of Technology (Affiliated to Visvesvaraya Technological University, Belagavi)TumakuruIndia
  2. 2.Department of Material Science and NanotechnologyYogi Vemana UniversityKadapaIndia

Personalised recommendations