Controllable white light generation from novel BaWO4: Yb3+/Ho3+/Tm3+ nanophosphor by modulating sensitizer ion concentration

  • Bibek Samanta
  • Arnab Kumar Dey
  • Preetam Bhaumik
  • Sumanta Manna
  • Anupam Halder
  • Debasis Jana
  • Kalyan K. Chattopadhyay
  • Uttam Kumar GhoraiEmail author


Generation of white light requires a proficient strategy for appropriate mixing of red, green and blue emissions in appropriate proportion through optimization of material composition. However, it is quite challenging to develop a single host material showing emission in full visible region, which can be excited by a single excitation source. Herein, a series of Yb3+-sensitized Ho3+/Tm3+ co-doped BaWO4 nanophosphors synthesized by hydrothermal method is reported. The effect of different concentration of sensitizer ion (Yb3+) on the luminescence properties of BaWO4:Yb3+/Ho3+/Tm3+ crystal is investigated in detail to obtain white light. The phosphors exhibited red, green and blue luminescence centered at 651 nm, 539 nm and 482 nm respectively under a 980 nm excitation. The obtained novel nanophosphor could be a major potential candidate for nanobiotechnology and optoelectronics device applications.



The authors gratefully acknowledge Principal Swami Shastrajnananda and Vice Principal Swami Ekachittananda of Ramakrishna Mission Vidyamandira for their infrastructural support and encouragement towards this project. We also thank Department of Science & Technology (DST) for financial support to this work. Technical assistance and a lot of help from Angshuman Santra, Soumyadip Mondal, Shymal Murmu and Rabiranjan Ray is also acknowledged.


  1. 1.
    V. Mahalingam, R. Naccache, F. Vetrone, J.A. Capobianco, Opt. Express 20, 111 (2012)CrossRefGoogle Scholar
  2. 2.
    D.R. Kim, S.W. Park, B.K. Moon, S.H. Park, J.H. Jeong, H. Choi, J.H. Kim, RSC Adv. 7, 1464 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Kumar, B.K. Gupta, RSC Adv. 5, 24729 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Li, C.F. Guo, Y.M. Yang, L. Li, N. Zhang, Acta Mater. 61, 7481 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Hou, Y. Zhang, K. Deng, Y. Chen, X. Li, X. Deng, Z. Cheng, H. Lian, C. Li, J. Lin, ACS Nano 9, 2584 (2015)CrossRefGoogle Scholar
  6. 6.
    F. Li, L. Li, C. Guo, T. Li, H. Mi, J.H. Noh, Jeong, Ceram. Int. 40, 7363 (2014)CrossRefGoogle Scholar
  7. 7.
    O.A. Savchuk, J.J. Carvajal, M.C. Pujol, E.W. Barrera, J. Massons, M. Aguilo, F. Diaz, J. Phys. Chem. C 119, 18546 (2015)CrossRefGoogle Scholar
  8. 8.
    J.H. Chung, S.Y. Lee, K.B. Shim, J.H. Ryu, Appl. Phys. Express 5, 4 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Chai, H. Lian, Z. Hou, C. Zhang, C. Peng, J. Lin, J. Phys. Chem. C 114, 610 (2010)CrossRefGoogle Scholar
  10. 10.
    C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, J. Lin, Small. 9, 4150 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Kanika, S. Kumar, B.K. Singh, Gupta, Chem. A Eur. J. 23, 17144 (2017)CrossRefGoogle Scholar
  12. 12.
    P. Kumar, J. Dwivedi, B.K. Gupta, J. Mater. Chem. C. 2, 10468 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Kumar, S. Singh, B.K. Gupta, Nanoscale. 8, 14297 (2016)CrossRefGoogle Scholar
  14. 14.
    P. Kumar, K. Nagpal, B.K. Gupta, ACS Appl. Mater. Interfaces. 9, 14301 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Zhang, L. Yang, J. Zhao, B. Liu, M.Y. Han, Z. Zhang, Angew. Chemie Int. Ed. 54, 11531 (2015)CrossRefGoogle Scholar
  16. 16.
    J.H. Chung, J.H. Ryu, S.W. Mhin, K.M. Kim, K.B. Shim, J. Mater. Chem. 22, 3997 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Wu, J. Yang, X. Wang, S. Gan, L. Li, Solid State Sci. 79, 85 (2018)CrossRefGoogle Scholar
  18. 18.
    H.L. Li, Z.L. Wang, S.J. Xu, J.H. Hao, J. Electrochem. Soc. 156, J112 (2009)CrossRefGoogle Scholar
  19. 19.
    L. Liu, K. Yang, X. Zhang, N. Qi, H. Li, Z. Zuo, J. Rare Earths 30, 1092 (2012)CrossRefGoogle Scholar
  20. 20.
    C. He, K. Yang, L. Liu, Z. Si, J. Rare Earths 31, 790 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Li, Z. Quan, J. Yang, P. Yang, J. Lin, Inorg. Chem. 46, 6329 (2007)CrossRefGoogle Scholar
  22. 22.
    A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, D. Haranath, Dalt. Trans. 44, 17166 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 86, 8 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Mukhopadhyay, V.K. Rai, New J. Chem. 41, 7650 (2017)CrossRefGoogle Scholar
  25. 25.
    Q. Dai, H. Song, X. Ren, S. Lu, G. Pan, X. Bai, B. Dong, R. Qin, X. Qu, H. Zhang, J. Phys. Chem. C 112, 19694 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Tang, X. Wang, D. Peng, W. Wang, H. Sun, X. Yao, J. Alloys Compd. 529, 49 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Li, C. Guo, H. Suo, P. Zhao, J. Mater. Chem. C. 4, 1964 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bibek Samanta
    • 1
  • Arnab Kumar Dey
    • 1
  • Preetam Bhaumik
    • 1
  • Sumanta Manna
    • 1
  • Anupam Halder
    • 1
    • 4
  • Debasis Jana
    • 2
  • Kalyan K. Chattopadhyay
    • 3
  • Uttam Kumar Ghorai
    • 1
    Email author
  1. 1.Department of Industrial Chemistry & Applied Chemistry, Swami Vivekananda Research CentreRamakrishna Mission VidyamandiraHowrahIndia
  2. 2.Department of ChemistryRamakrishna Mission VidyamandiraHowrahIndia
  3. 3.School of Materials Science and NanotechnologyJadavpur UniversityKolkataIndia
  4. 4.Department of Materials ScienceSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations