Synthesis and capacitance properties of N-doped porous carbon/NixCoyOz/carbon micro–nanotubes composites using coal-based polyaniline as a carbon and nitrogen source

  • Xiaoqin WangEmail author
  • Yufei Yang
  • Nana Yang
  • Jie Zhao
  • Yong Zhang
  • Qiaoqin Li
  • Jia Chu
  • Bohua Wu
  • Shanxin XiongEmail author


Using coal-based polyaniline as a carbon and nitrogen source, N-doped porous carbon (NPC)/nickel cobalt oxides (NixCoyOz)/carbon micro–nanotubes (CMNT) composites possessing rich nanoscale meso–macropores, spinel NiCo2O4 sheets and multi-walled CMNT are successfully synthesized by the first pyrolysis and the second wet oxidation process. Therein, CMNT owning a diameter of 10–200 nm and a length of several micrometers is grown by a two-stage furnace process in a hydrogen-free atmosphere, using nickel acetate as a growth catalyst precursor. CMNT exhibits polymorphic features, including most curved tubes, a few vertical tubes, some bamboo-like tubes and some Chinese-sugar-gourd-skewer-like tubes, resulting from the diversity and low hydrogen content of gaseous cracking products from coal-based polyaniline. Carbon in CMNT mainly exists in the graphitic state while carbon in NPC mainly presents in the amorphous state. Nitrogen in CMNT mainly exists in the form of graphitic N while nitrogen in NPC (0.89 wt% in composites) mainly presents in the form of pyrrolic N (74.4 at.%) and oxidized N (25.6 at.%). The intercalated Ni and Co impurity in NPC and CMNT are transformed to most NiCo2O4 and a few NiO. The BET specific surface area and average pore width of composites are 169.3 m2/g and 8.4 nm. CMNT incorporation obviously improves capacitance properties of NPC/NixCoyOz/CMNT composites. The composites demonstrate a higher specific capacitance of 598.4 F/g at 1 A/g, and a good cycling stability retaining a high capacity of 190.1 F/g (81.1% retention) at 5 A/g after 5000 charge–discharge cycles. It is attributed to the nitrogen incorporation of porous carbon, high conductivity and large specific surface area of CMNT, and high electrochemical activity of NixCoyOz, especially, the synergistic effects of NPC, CMNT and NixCoyOz. This study has developed a polygeneration process for coal pyrolysis, which also enables the combined utilization of coal pyrolysis products.



The authors thank for the financial support by the National Natural Science Foundation of China (Grant Nos.: 21406176, 51503169).


  1. 1.
    R.R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han, H. Ahn, Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J. Alloys Compd. 509, 6677–6682 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Wang, C.M.B. Holt, Z. Li, X. Tan, B.S. Amirkhiz, Z. Xu, B.C. Olsen, T. Stephenson, D. Mitlin, Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 5, 605–617 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Wang, Q. Li, Y. Zhang, Y. Yang, Shanxin Xiong, Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source. Appl. Surf. Sci. 442, 565–574 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Xiaoqin Wang, Y. Yang, Q. Zhang, M. Li, R. Gong, S. Zhang, Xiong, Facile synthesis and capacitance properties of N-doped porous carbon/iron oxide composites through the single-step pyrolysis of coal-based polyaniline. J. Porous Mater. 25, 845–853 (2018)CrossRefGoogle Scholar
  5. 5.
    D. Pech, M. Brunet, H.G. Durou, P.H. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)CrossRefGoogle Scholar
  6. 6.
    J. Yan, Q. Wang, T. Wei, Z.J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 157–164 (2014)Google Scholar
  7. 7.
    X. Zhang, Y. Jiao, L. Sun, L. Wang, A. Wu, H. Yan, M. Meng, C. Tian, B. Jiang, H. Fu, GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale 8, 2418–2427 (2016)CrossRefGoogle Scholar
  8. 8.
    H.G. Wang, Y. Wang, Y. Li, Y. Wan, Q. Duan, Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82, 116–123 (2015)CrossRefGoogle Scholar
  9. 9.
    F. Sun, J. Gao, Y. Yang, Y. Zhu, L. Wang, X. Pi, X. Liu, Z. Qu, S. Wu, Y. Qin, One-step ammonia activation of Zhundong coal generating nitrogen doped microporous carbon for gas adsorption and energy storage. Carbon 109, 747–754 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Chen, J. Duan, M. Jaroniec, S. Qiao, Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem. 52, 13479–13821 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.Q. Zhang, X.H. Xia, J.P. Tu, Y.J. Mai, S.J. Shi, X.L. Wang, C.D. Gu, Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J. Power Sources 199, 413–417 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y. Yang, H. Zhang, H.H. Hng, Q. Yan, Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 3, 643–652 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 5974–5980 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Cheng, Z.G. Lu, J.Q. Deng, C.Y. Chung, K. Zhang, Y.Y. Li, A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 3, 895–901 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Yang, X. Song, P. Zhang, L. Gao, Facile synthesis of nitrogen-doped graphene-ultrathin MnO2 sheet composites and their electrochemical performances. ACS Appl. Mater. Interfaces 5, 3317–3322 (2013)CrossRefGoogle Scholar
  16. 16.
    Qinghong Wang, Lifang Jiao, H. Du, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 245, 101–106 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Wang, X. Han, M. Lim, N. Singh, C.L. Gan, M. Gan, P.S. Lee, Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 116, 12448–12454 (2012)CrossRefGoogle Scholar
  18. 18.
    T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010)CrossRefGoogle Scholar
  19. 19.
    B.B. Cui, H. Lin, J.B. Li, X. Li, J. Yang, J. Tao, Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 18, 1440–1447 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  21. 21.
    C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, P. Deniart, R. Lee, J.E. Fisher, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)CrossRefGoogle Scholar
  22. 22.
    R. Andrews, D. Jacques, D.L. Qian, T. Rantell, Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35, 1008–1017 (2002)CrossRefGoogle Scholar
  23. 23.
    J.M.C. Moreno, M. Yoshimura, Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123, 741–742 (2001)CrossRefGoogle Scholar
  24. 24.
    J. Libera, Y. Gogotsi, Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon 39, 1307–1318 (2001)CrossRefGoogle Scholar
  25. 25.
    W. Wang, J.Y. Huang, D.Z. Wang, Z.F. Ren, Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43, 1328–1331 (2005)CrossRefGoogle Scholar
  26. 26.
    W. Zhang, D. Ma, J. Liu, L. Kong, W. Yu, Y. Qian, Solvothermal synthesis of carbon nanotubes by metal oxide and ethanol at mild temperature. Carbon 42, 2341–2343 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, Y. Qian, A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 122, 12383–12384 (2000)CrossRefGoogle Scholar
  28. 28.
    G. Hu, M. Cheng, D. Ma, X. Bao, Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route. Chem. Mater. 15, 1470–1473 (2003)CrossRefGoogle Scholar
  29. 29.
    J. Liu, M. Shao, X. Chen, W. Yu, X. Liu, Y. Qian, Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. Am. Chem. Soc. 125, 8088–8089 (2003)CrossRefGoogle Scholar
  30. 30.
    Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394, 631–632 (1998)CrossRefGoogle Scholar
  31. 31.
    K. Hernadia, A. Fonsecaa, J.B. Nagya, D. Bernaertsb, A.A. Lucasa, Fe-catalyzed carbon nanotube formation. Carbon 34, 1249–1257 (1996)CrossRefGoogle Scholar
  32. 32.
    K. Voelskow, M.J. Becker, W. Xia, M. Muhler, T. Turek, The influence of kinetics, mass transfer and catalyst deactivation on the growth rate of multiwalled carbon nanotubes from ethene on a cobalt-based catalyst. Chem. Eng. J. 244, 68–74 (2014)CrossRefGoogle Scholar
  33. 33.
    A.K. Sinha, D.W. Hwang, L.P. Hwang, A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method. Chem. Phys. Lett. 332, 455–460 (2000)CrossRefGoogle Scholar
  34. 34.
    J.-C. Charlier, H. Amara, Ph. Lambin, Catalytically assisted tip growth mechanism for single-wall carbon nanotubes. ACS Nano 1, 202–207 (2007)CrossRefGoogle Scholar
  35. 35.
    H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, Y. Achiba, Diameter control of single-walled carbon nanotubes. Carbon 38, 1691–1697 (2000)CrossRefGoogle Scholar
  36. 36.
    Y.F. Li, J.S. Qiu, Z.B. Zhao, T.H. Wang, Y.P. Wang, W. Li, Bamboo-shaped carbon tubes from coal. Chem. Phys. Lett. 366, 544–550 (2002)CrossRefGoogle Scholar
  37. 37.
    L. Truong-Phuoc, C. Duong-Viet, W.H. Doh, A. Bonnefont, I. Janowska, D. Begin, E.R. Savinova, Pascal Granger, Cuong Pham-Huu, Influence of the reaction temperature on the oxygen reductionreaction on nitrogen-doped carbon nanotube catalysts. Catal. Today 249, 236–243 (2015)CrossRefGoogle Scholar
  38. 38.
    Haifeng Xiong, M.A. Motchelaho, M. Moyo, L.L. Jewell, N.J. Coville, Fischer–Tropsch synthesis: iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping. Appl. Catal. A 482, 377–386 (2014)CrossRefGoogle Scholar
  39. 39.
    G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A.L.S. Eh, P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015)CrossRefGoogle Scholar
  40. 40.
    R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, P.S. Lee, Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. Adv. Energy Mater. 6, 1501833 (2016)CrossRefGoogle Scholar
  41. 41.
    M.S. Wu, C.Y. Huang, K.H. Lin, Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J. Power Sources 186, 557–564 (2009)CrossRefGoogle Scholar
  42. 42.
    Y.F. Yuan, J.X. Lin, D. Zhang, S.M. Yin, Y.L. Zhao, J.L. Yang, Y.B. Chen, S.Y. Guo, Freestanding hierarchical NiO/MnO2 core/shell nanocomposite arrays for high performance electrochemical energy storage. Electrochim. Acta 227, 303–309 (2017)CrossRefGoogle Scholar
  43. 43.
    X. Wang, X. Han, M. Lim, N. Singh, C.L. Gan, M Jan, P.S. Lee, Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 116, 12448–12454 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoqin Wang
    • 1
    Email author
  • Yufei Yang
    • 1
  • Nana Yang
    • 1
  • Jie Zhao
    • 1
  • Yong Zhang
    • 1
  • Qiaoqin Li
    • 1
  • Jia Chu
    • 1
  • Bohua Wu
    • 1
  • Shanxin Xiong
    • 1
    Email author
  1. 1.College of Chemistry & Chemical EngineeringXi’an University of Science & TechnologyXi’anChina

Personalised recommendations