Hollow rod-like hybrid Co2CrO4/Co1−xS for high-performance asymmetric supercapacitor

  • Jinhua Ge
  • Jihuai WuEmail author
  • Beirong Ye
  • Leqing Fan
  • Jinbiao Jia


A hollow rod-like hybrid of Co2CrO4/Co1−xS is synthesized via a facile two-step hydrothermal process, and the mass ratio for Co2CrO4–Co1−xS in the hybrid is optimized. The Co2CrO4/Co1−xS electrode exhibits excellent properties with high specific capacitance of 1580 F g−1 at current density of 1 A g−1 and possesses good rate performance. An asymmetric supercapacitor of Co2CrO4/Co1−xS//AC is assembled, which can be operated within a voltage range of 0–1.6 V, demonstrating specific capacitance of 92.3 F g−1, energy density of 32.8 Wh kg−1 and highest power density of 4003.3 W kg−1. Moreover, the specific capacitance of the device remains 88% after 5000 cycles. The good characteristics of Co2CrO4/Co1−xS//AC can be ascribed to the hollow rod-like structure and the positive synergistic effects of Co2CrO4 and Co1−xS components in the hybrid. The unique structure and superior performances render Co2CrO4/Co1−xS hybrid as a promising candidate for energy storage device.



The authors acknowledge the financial joint support by the National Natural Science Foundation of China (Grant Nos. 91422301, 51472094, 61474047).


  1. 1.
    G. Muller, J. Cook, H. Kim, S. Tolbert, B. Dunn. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Xing, Y. Gui, G. Zhang, C. Song, CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performances. Electrochim. Acta 157, 15–22 (2015)CrossRefGoogle Scholar
  4. 4.
    G. He, J. Li, W. Li, B. Li, N. Noor, K. Xu et al., One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 3, 14272–14278 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Zhao, X. He, R. Chen, Q. Liu, J. Liu, D. Song et al., Hierarchical NiCo2S4@CoMoO4 core-shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors. Appl. Surf. Sci. 453, 73–82 (2018)Google Scholar
  6. 6.
    X. He, R. Li, J. Liu, Q. Liu, R.R. Chen, D. Song et al., Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–583 (2017)Google Scholar
  7. 7.
    Z. Zhang, X. Huang, H. Li, H. Wang, Y. Zhao, T. Ma, All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon. J. Energy Chem. 26, 1260–1266 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, A flexible asymmetric fibered-supercapacitor based on unique Co3O4@PPy core-shell nanorod arrays electrode. Chem. Eng. J. 327 193–201 (2017)Google Scholar
  9. 9.
    B. Xin, Y. Zhao, C. Xu, A high mass loading electrode based on ultrathin Co3S4 nanosheets for high performance supercapacitor. J. Solid State Electrochem. 20, 2197–2205 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li et al., MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 24, 2155–2162 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Li, X. Li, J. Cheng, D. Yuan, W. Ni, Q. Guan et al., Fiber—shaped solid—state supercapacitors based on molybdenum disulfide nanosheets for a self—powered photodetecting system. Nano Energy 21, 228–237 (2016)CrossRefGoogle Scholar
  12. 12.
    Q. Liu, J. Zhang, A general and controllable synthesis of Comsn (Co9S8, Co3S4, and Co1−xS) hierarchical microspheres with homogeneous phases. CrystEngComm 15, 5087–5092 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Lin, S. Chou, Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors. RSC Adv. 3, 2043–2048 (2013)CrossRefGoogle Scholar
  14. 14.
    Q. Zhao, C.X. Wu, L. Cong, Y. Zhang, G. Sun, H. Xie et al., Yolk–shell Co2CrO4 nanospheres as highly catalysts for Li–O2 batteries: understanding of electrocatalytic mechanism. J. Mater. Chem. A 5, 544–553 (2016)Google Scholar
  15. 15.
    J. Huo, J. Wu, M. Zheng, Y. Tu, Z. Lan, Hydrothermal synthesis of CoMoO4/Co9S8 hybrid nanotubes based on counter electrodes for highly efficient dye-sensitized solar cells. RSC Adv. 5, 83029–83035 (2015)CrossRefGoogle Scholar
  16. 16.
    W. Wang, M. Dahl, Y. Yin, Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 25, 1179–1189 (2013)CrossRefGoogle Scholar
  17. 17.
    F.H. Jin, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse et al., Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 5, 627–631 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Banerjee, S. Bhatnagar, K.K. Upadhyay, P. Yadav, S. Ogale, Hollow Co0.85Se nanowire array on carbon fiber paper for high rate pseudocapacitor. ACS Appl. Mater. Interfaces 6, 18844 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Huang, D. Hou, Y. Zhou, W. Zhou, G. Li, Z. Tang et al., MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 3, 22886–22891 (2015)Google Scholar
  20. 20.
    H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, H. Wan, Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 248, 28–36 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Zhou, X. Yang, M.N. Hedhili, H. Li, S. Min, J. Ming et al., Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy 32, 470–478 (2017)Google Scholar
  22. 22.
    Z. Ren, X. Xu, X. Wang, B. Gao, Q. Yue, W. Song et al., FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr (VI) removal by amine cross-linking biosorbent. J. Colloid Interface Sci. 468, 313–323 (2016)CrossRefGoogle Scholar
  23. 23.
    S.R. Chowdhury, E.K. Yanful, A.R. Pratt, Chemical states in XPS and Raman analysis during removal of Cr (VI) from contaminated water by mixed maghemite–magnetite nanoparticles. J. Hazard. Mater. 235, 246–256 (2012)CrossRefGoogle Scholar
  24. 24.
    J.C. Xing, Y.L. Zhu, Q.W. Zhou, X.D. Zheng, Q.J. Jiao, Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim. Acta 136, 550–556 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Li, S. Liu, W. Chen, S. Li, L. Shi, Y. Zhao, Facile synthesis of flower-like cobalt sulfide hierarchitectures with superior electrode performance for supercapacitors. J. Alloys Compd. 712, 139–146 (2017)Google Scholar
  26. 26.
    K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, J.K. Sang, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116–122 (2014)CrossRefGoogle Scholar
  27. 27.
    B. Qu, Y. Chen, M. Zhang, L. Hu, D. Lei, B. Lu et al., β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 4, 7810–7816 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Ramkumar, M. Minakshi, Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans. 44, 6158–6168 (2015)CrossRefGoogle Scholar
  29. 29.
    X. Yu, B. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4–3D graphene hybrid electrodes. Adv. Mater. 26, 1044–1051 (2014)CrossRefGoogle Scholar
  30. 30.
    U. Patil, M. Nam, J. Sohn, S. Kulkarni, R. Shin, S. Kang et al., Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors. J. Mater. Chem. A 2, 19075–19083 (2014)CrossRefGoogle Scholar
  31. 31.
    C. Gong, M. Huang, J. Zhang, M. Lai, L. Fan, J. Lin et al., Facile synthesis of Ni0.85Se on Ni foam for high-performance asymmetric capacitor. RSC Adv. 5, 81474–81481 (2015)CrossRefGoogle Scholar
  32. 32.
    P. Hiralal, H. Wang, H.E. Unalan, Y. Liu, M. Rouvala, D. Wei et al., Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures. J. Mater. Chem. 21, 17810–17815 (2011)CrossRefGoogle Scholar
  33. 33.
    J.L. Qi, J.H. Lin, X. Wang, J.L. Guo, L.F. Xue, J.C. Feng et al., Low resistance VFG-microporous hybrid Al-based electrodes for supercapacitors. Nano Energy 26, 657–667 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Yan, Z. Fan, S. Wei, G. Ning, W. Tong, Z. Qiang et al., Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Func. Mater. 22, 2632–2641 (2012)CrossRefGoogle Scholar
  35. 35.
    V. Khomenko, E. Raymundo-Piñero, F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 153, 183–190 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, S. Li, Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors. Appl. Surf. Sci. 396, 1816–1824 (2017)Google Scholar
  37. 37.
    S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li et al., Hollow spheres: MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 24, 2155–2162 (2014)CrossRefGoogle Scholar
  38. 38.
    X. Mao, Z. Wang, W. Kong, W. Wang, Nickel foam supported hierarchical Co9S8 nanostructures for asymmetric supercapacitors. N. J. Chem. 41, 1142–1148 (2016)Google Scholar
  39. 39.
    X. Ma, L. Kong, W. Zhang, M. Liu, Y. Luo, L. Kang, Design and synthesis of 3D Co3O4 @MMoO4 (M = Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochim. Acta 130, 660–669 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jinhua Ge
    • 1
    • 2
  • Jihuai Wu
    • 1
    Email author
  • Beirong Ye
    • 1
  • Leqing Fan
    • 1
  • Jinbiao Jia
    • 2
  1. 1.Fujian Key Laboratory of Photoelectric Functional Materials, Eng. Res. Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical ChemistryHuaqiao UniversityXiamenPeople’s Republic of China
  2. 2.College of Physics and EngineeringQufu Normal UniversityQufuPeople’s Republic of China

Personalised recommendations