Hollow rod-like hybrid Co2CrO4/Co1−xS for high-performance asymmetric supercapacitor
- 27 Downloads
Abstract
A hollow rod-like hybrid of Co2CrO4/Co1−xS is synthesized via a facile two-step hydrothermal process, and the mass ratio for Co2CrO4–Co1−xS in the hybrid is optimized. The Co2CrO4/Co1−xS electrode exhibits excellent properties with high specific capacitance of 1580 F g−1 at current density of 1 A g−1 and possesses good rate performance. An asymmetric supercapacitor of Co2CrO4/Co1−xS//AC is assembled, which can be operated within a voltage range of 0–1.6 V, demonstrating specific capacitance of 92.3 F g−1, energy density of 32.8 Wh kg−1 and highest power density of 4003.3 W kg−1. Moreover, the specific capacitance of the device remains 88% after 5000 cycles. The good characteristics of Co2CrO4/Co1−xS//AC can be ascribed to the hollow rod-like structure and the positive synergistic effects of Co2CrO4 and Co1−xS components in the hybrid. The unique structure and superior performances render Co2CrO4/Co1−xS hybrid as a promising candidate for energy storage device.
Notes
Acknowledgements
The authors acknowledge the financial joint support by the National Natural Science Foundation of China (Grant Nos. 91422301, 51472094, 61474047).
References
- 1.G. Muller, J. Cook, H. Kim, S. Tolbert, B. Dunn. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911 (2015)CrossRefGoogle Scholar
- 2.M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2012)CrossRefGoogle Scholar
- 3.X. Xing, Y. Gui, G. Zhang, C. Song, CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performances. Electrochim. Acta 157, 15–22 (2015)CrossRefGoogle Scholar
- 4.G. He, J. Li, W. Li, B. Li, N. Noor, K. Xu et al., One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 3, 14272–14278 (2015)CrossRefGoogle Scholar
- 5.Y. Zhao, X. He, R. Chen, Q. Liu, J. Liu, D. Song et al., Hierarchical NiCo2S4@CoMoO4 core-shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors. Appl. Surf. Sci. 453, 73–82 (2018)Google Scholar
- 6.X. He, R. Li, J. Liu, Q. Liu, R.R. Chen, D. Song et al., Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–583 (2017)Google Scholar
- 7.Z. Zhang, X. Huang, H. Li, H. Wang, Y. Zhao, T. Ma, All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon. J. Energy Chem. 26, 1260–1266 (2017)CrossRefGoogle Scholar
- 8.X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, A flexible asymmetric fibered-supercapacitor based on unique Co3O4@PPy core-shell nanorod arrays electrode. Chem. Eng. J. 327 193–201 (2017)Google Scholar
- 9.B. Xin, Y. Zhao, C. Xu, A high mass loading electrode based on ultrathin Co3S4 nanosheets for high performance supercapacitor. J. Solid State Electrochem. 20, 2197–2205 (2016)CrossRefGoogle Scholar
- 10.S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li et al., MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 24, 2155–2162 (2014)CrossRefGoogle Scholar
- 11.X. Li, X. Li, J. Cheng, D. Yuan, W. Ni, Q. Guan et al., Fiber—shaped solid—state supercapacitors based on molybdenum disulfide nanosheets for a self—powered photodetecting system. Nano Energy 21, 228–237 (2016)CrossRefGoogle Scholar
- 12.Q. Liu, J. Zhang, A general and controllable synthesis of Comsn (Co9S8, Co3S4, and Co1−xS) hierarchical microspheres with homogeneous phases. CrystEngComm 15, 5087–5092 (2013)CrossRefGoogle Scholar
- 13.J. Lin, S. Chou, Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors. RSC Adv. 3, 2043–2048 (2013)CrossRefGoogle Scholar
- 14.Q. Zhao, C.X. Wu, L. Cong, Y. Zhang, G. Sun, H. Xie et al., Yolk–shell Co2CrO4 nanospheres as highly catalysts for Li–O2 batteries: understanding of electrocatalytic mechanism. J. Mater. Chem. A 5, 544–553 (2016)Google Scholar
- 15.J. Huo, J. Wu, M. Zheng, Y. Tu, Z. Lan, Hydrothermal synthesis of CoMoO4/Co9S8 hybrid nanotubes based on counter electrodes for highly efficient dye-sensitized solar cells. RSC Adv. 5, 83029–83035 (2015)CrossRefGoogle Scholar
- 16.W. Wang, M. Dahl, Y. Yin, Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 25, 1179–1189 (2013)CrossRefGoogle Scholar
- 17.F.H. Jin, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse et al., Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 5, 627–631 (2006)CrossRefGoogle Scholar
- 18.A. Banerjee, S. Bhatnagar, K.K. Upadhyay, P. Yadav, S. Ogale, Hollow Co0.85Se nanowire array on carbon fiber paper for high rate pseudocapacitor. ACS Appl. Mater. Interfaces 6, 18844 (2014)CrossRefGoogle Scholar
- 19.J. Huang, D. Hou, Y. Zhou, W. Zhou, G. Li, Z. Tang et al., MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 3, 22886–22891 (2015)Google Scholar
- 20.H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, H. Wan, Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 248, 28–36 (2014)CrossRefGoogle Scholar
- 21.X. Zhou, X. Yang, M.N. Hedhili, H. Li, S. Min, J. Ming et al., Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy 32, 470–478 (2017)Google Scholar
- 22.Z. Ren, X. Xu, X. Wang, B. Gao, Q. Yue, W. Song et al., FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr (VI) removal by amine cross-linking biosorbent. J. Colloid Interface Sci. 468, 313–323 (2016)CrossRefGoogle Scholar
- 23.S.R. Chowdhury, E.K. Yanful, A.R. Pratt, Chemical states in XPS and Raman analysis during removal of Cr (VI) from contaminated water by mixed maghemite–magnetite nanoparticles. J. Hazard. Mater. 235, 246–256 (2012)CrossRefGoogle Scholar
- 24.J.C. Xing, Y.L. Zhu, Q.W. Zhou, X.D. Zheng, Q.J. Jiao, Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim. Acta 136, 550–556 (2014)CrossRefGoogle Scholar
- 25.Y. Li, S. Liu, W. Chen, S. Li, L. Shi, Y. Zhao, Facile synthesis of flower-like cobalt sulfide hierarchitectures with superior electrode performance for supercapacitors. J. Alloys Compd. 712, 139–146 (2017)Google Scholar
- 26.K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, J.K. Sang, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116–122 (2014)CrossRefGoogle Scholar
- 27.B. Qu, Y. Chen, M. Zhang, L. Hu, D. Lei, B. Lu et al., β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 4, 7810–7816 (2012)CrossRefGoogle Scholar
- 28.R. Ramkumar, M. Minakshi, Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans. 44, 6158–6168 (2015)CrossRefGoogle Scholar
- 29.X. Yu, B. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4–3D graphene hybrid electrodes. Adv. Mater. 26, 1044–1051 (2014)CrossRefGoogle Scholar
- 30.U. Patil, M. Nam, J. Sohn, S. Kulkarni, R. Shin, S. Kang et al., Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors. J. Mater. Chem. A 2, 19075–19083 (2014)CrossRefGoogle Scholar
- 31.C. Gong, M. Huang, J. Zhang, M. Lai, L. Fan, J. Lin et al., Facile synthesis of Ni0.85Se on Ni foam for high-performance asymmetric capacitor. RSC Adv. 5, 81474–81481 (2015)CrossRefGoogle Scholar
- 32.P. Hiralal, H. Wang, H.E. Unalan, Y. Liu, M. Rouvala, D. Wei et al., Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures. J. Mater. Chem. 21, 17810–17815 (2011)CrossRefGoogle Scholar
- 33.J.L. Qi, J.H. Lin, X. Wang, J.L. Guo, L.F. Xue, J.C. Feng et al., Low resistance VFG-microporous hybrid Al-based electrodes for supercapacitors. Nano Energy 26, 657–667 (2016)CrossRefGoogle Scholar
- 34.J. Yan, Z. Fan, S. Wei, G. Ning, W. Tong, Z. Qiang et al., Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Func. Mater. 22, 2632–2641 (2012)CrossRefGoogle Scholar
- 35.V. Khomenko, E. Raymundo-Piñero, F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 153, 183–190 (2006)CrossRefGoogle Scholar
- 36.M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, S. Li, Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors. Appl. Surf. Sci. 396, 1816–1824 (2017)Google Scholar
- 37.S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li et al., Hollow spheres: MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 24, 2155–2162 (2014)CrossRefGoogle Scholar
- 38.X. Mao, Z. Wang, W. Kong, W. Wang, Nickel foam supported hierarchical Co9S8 nanostructures for asymmetric supercapacitors. N. J. Chem. 41, 1142–1148 (2016)Google Scholar
- 39.X. Ma, L. Kong, W. Zhang, M. Liu, Y. Luo, L. Kang, Design and synthesis of 3D Co3O4 @MMoO4 (M = Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochim. Acta 130, 660–669 (2014)CrossRefGoogle Scholar