Advertisement

Fabrication of flexible MIL-100(Fe) supported SiO2 nanofibrous membrane for visible light photocatalysis

  • Meng-Jie Chang
  • Wen-Na Cui
  • Xiao-Jiao Chai
  • Jun LiuEmail author
  • Kang Wang
  • Lei Qiu
Article
  • 48 Downloads

Abstract

Core/shell structured SiO2/MIL-100(Fe) fibrous membrane was prepared for photocatalytic degradation of dyes. The metal organic framework shells of MIL-100(Fe) were decorated on electrospun SiO2 nanofiber surface through layer-by-layer assembly. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy tests confirmed the successful synthesis of the MIL-100(Fe) nanoparticles. The formed SiO2/MIL-100(Fe) catalysts exhibited high catalytic activity towards degradation of Rhodamine B under visible light irradiation. The photocatalytic activity remained above 80% within 90 min illumination after three cycles. Due to the easy preparation and high photocatalytic performance, as well as convenient collection for reuse, the obtained SiO2/MIL-100(Fe) membranes are promising catalysts for practical application.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21501140 and 21403165).

References

  1. 1.
    Y. Wang, H. Suzuki, J. Xie, O. Tomita, D.J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Chem. Rev. 118, 5201–5241 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2, 17050 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Wang, H. Fan, X. Ren, J. Fang, Appl. Phys. A 124, 1–12 (2018)Google Scholar
  4. 4.
    L. Ma, H. Fan, K. Fu, S. Lei, Q. Hu, H. Huang, G. He, ACS Sustain. Chem. Eng. 5, 7093–7103 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Tian, H. Fan, J. Ma, L. Ma, G. Dong, Electrochim. Acta 247, 787–794 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Liu, C. Woll, Chem. Soc. Rev. 46, 5730–5770 (2017)CrossRefGoogle Scholar
  8. 8.
    Q. Yang, Q. Xu, H.L. Jiang, Chem. Soc. Rev. 46, 4774–4808 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Park, M. Xu, F. Li, H.C. Zhou, J. Am. Chem. Soc. 140, 5493–5499 (2018)CrossRefGoogle Scholar
  10. 10.
    G. Lan, Y.Y. Zhu, S.S. Veroneau, Z. Xu, D. Micheroni, W. Lin, J. Am. Chem. Soc. 140, 5326–5329 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Zhang, B. Zheng, W. Shi, X. Chen, Z. Xu, S. Li, Y.R. Chi, Y. Yang, J. Lu, W. Huang, F. Huo, Adv. Mater.  https://doi.org/10.1002/adma.201800643 (2018)Google Scholar
  12. 12.
    X. Ren, H. Fan, J. Ma, C. Wang, M. Zhang, N. Zhao, Appl. Surf. Sci. 441, 194–203 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Zhu, P. Li, W. Guo, Y. Zhao, R. Zou, Coord. Chem. Rev. 359, 80–101 (2018)CrossRefGoogle Scholar
  14. 14.
    D. Wang, J. Albero, H. García, Z. Li, J. Catal. 349, 156–162 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Li, H. Liu, J. Zhang, Y. Cheng, C. Zhang, X. Fei, Y. Xian, ACS Appl. Mater. Interfaces 9, 40716–40725 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Zhao, Q. Xia, H. Xing, D. Chen, H. Wang, ACS Sustain. Chem. Eng. 5, 4449–4456 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 55, 5414–5445 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Leng, H. Liu, M. Ding, Q. Lin, H. Jiang, ACS Catal. 8, 4583–4590 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Fang, Y. Ma, M. Zheng, P. Yang, A.M. Asiri, X. Wang, Coord. Chem. Rev. (2017).  https://doi.org/10.1016/j.ccr.2017.09.013
  20. 20.
    R. Liang, R. Huang, S. Ying, X. Wang, G. Yan, L. Wu, Nano Res. 11, 1109–1123 (2017)CrossRefGoogle Scholar
  21. 21.
    D. Wang, Z. Li, Res. Chem. Intermed. 43, 5169–5186 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Xu, Z. Chen, B. Han, C. Li, Catal. Commun. 98, 112–115 (2017)CrossRefGoogle Scholar
  23. 23.
    F. Ke, J. Zhu, L.G. Qiu, X. Jiang, Chem. Commun. 49, 1267–1269 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, F. Sedighi, Ultrason. Sonochem. 50, 46–58 (2019)CrossRefGoogle Scholar
  25. 25.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 27, 1191–1196 (2015)Google Scholar
  27. 27.
    J. Liu, J. Shi, L. Jiang, F. Zhang, L. Wang, S. Yamamoto, M. Takano, M. Chang, H. Zhang, Y. Chen, Appl. Surf. Sci. 258, 7530–7535 (2012)CrossRefGoogle Scholar
  28. 28.
    B.M. Baker, B. Trappmann, W.Y. Wang, M.S. Sakar, I.L. Kim, V.B. Shenoy, J.A. Burdick, C.S. Chen, Nat. Mater. 14, 1262–1268 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Wang, Y. Zhao, Y. Tian, L. Jiang, Angew. Chem. Int. Ed. 54, 14732–14737 (2015)CrossRefGoogle Scholar
  30. 30.
    Z. Li, J. Zhang, Y. Chen, J. Li, X. Lou, Nat. Commun. 6, 8850–8857 (2015)CrossRefGoogle Scholar
  31. 31.
    C. Niu, J. Meng, X. Wang, C. Han, M. Yan, K. Zhao, X. Xu, W. Ren, Y. Zhao, L. Xu, Q. Zhang, D. Zhao, L. Mai, Nat. Commun. 6, 7402–7410 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Yang, V. Salles, Y.V. Kaneti, M. Liu, M. Maillard, C. Journet, X. Jiang, A. Brioude, Sens. Actuators B 220, 1112–1119 (2015)CrossRefGoogle Scholar
  33. 33.
    Z. Lian, L. Huimin, O. Zhaofei, Dalton Trans. 43, 6684–6688 (2014)CrossRefGoogle Scholar
  34. 34.
    C. Liu, Y.N. Wu, C. Morlay, Y. Gu, B. Gebremariam, X. Yuan, F. Li, ACS Appl. Mater. Interfaces 8, 2552–2561 (2016)CrossRefGoogle Scholar
  35. 35.
    A.X. Lu, A.M. Ploskonka, T.M. Tovar, G.W. Peterson, J.B. DeCoste, Ind. Eng. Chem. Res. 56, 14502–14506 (2017)CrossRefGoogle Scholar
  36. 36.
    R. Wang, J. Guo, D. Chen, Y.-E. Miao, J. Pan, W.W. Tjiu, T. Liu, J. Mater. Chem. 21, 19375 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Liu, M. Chang, H. Du, J. Nanosci. Nanotechnol. 17, 3792–3797 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Chang, W. Cui, J. Liu, K. Wang, X. Chai, J. Mater. Sci.: Mater. Electron. 29, 6771–6778 (2018)Google Scholar
  39. 39.
    C.-F. Zhang, L.-G. Qiu, F. Ke, Y.-J. Zhu, Y.-P. Yuan, G.-S. Xu, X. Jiang, J. Mater. Chem. A 1, 14329 (2013)CrossRefGoogle Scholar
  40. 40.
    Y.D. Zhu, S.P. Chen, H. Zhao, Y. Yang, X.Q. Chen, J. Sun, H.S. Fan, X.D. Zhang, ACS Appl. Mater. Interfaces 8, 34209–34217 (2016)CrossRefGoogle Scholar
  41. 41.
    Z. Ma, Z. Hu, X. He, Z. Fang, Y. Li, J. Qiu, Appl. Surf. Sci. 360, 174–183 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Liao, Z. Ma, G. Dong, J. Qiu, R.J. Xie, J. Am. Ceram. Soc. 98, 957–964 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Meng-Jie Chang
    • 1
  • Wen-Na Cui
    • 1
  • Xiao-Jiao Chai
    • 1
  • Jun Liu
    • 1
    Email author
  • Kang Wang
    • 1
  • Lei Qiu
    • 1
  1. 1.Department of Materials Science and EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations