Effect of poly(ether ether ketone) and allyl compounds on microstructure and properties of bismaleimide

  • Yufei ChenEmail author
  • Hongyuan Guo
  • Chengbao Geng
  • Yunzhong Wu
  • Guoqing Dai
  • Chengjun Teng


Sulfonated poly(ether ether ketone) (SPEEK) was obtained by oxidizing poly(ether ether ketone) (PEEK) with concentrated sulfuric acid. Bismaleimide (BMI) resin was used as matrix; 3,3′-diallyl bisphenol A (BBA) and bisphenol A diallyl ether (BBE) as reactive diluent; SPEEK as modifier. SPEEK/BBA–BBE–BMI composites were prepared with compression molding method. The modification effects of SPEEK and microstructure, mechanical properties, thermal stability and dielectric properties of composites are studied. Fourier-transform infrared spectroscopy, scanning electron microscope and energy dispersive spectrometer spectrum analysis show that sulfonation effect of SPEEK is obvious. The micromorphology of SPEEK/BBA–BBE–BMI composites shows that SPEEK exhibits a porous and two-phase structure, which uniformly disperses in matrix. The fracture morphology of rugged river pattern gives the composite excellent performance. Mechanical properties results indicate that the flexural strength, flexural modulus, and impact strength of composites are improved significantly; they are 147.93 MPa, 4.15 GPa and 15.74 kJ/mm2, which are higher 49.47%, 45.61% and 66.21% than those of matrix, respectively, when the content of SPEEK is 5 wt%. The thermal decomposition temperature is 460 °C, which is 15 °C higher than that of matrix. Dielectric constant of composite is 2.415 at a frequency of 100 Hz. Dielectric loss tangent of composites is slightly higher than that of matrix resin in the low frequency region. However, it appears to first decrease and then increase with the increases of SPEEK in the high frequency. Volume resistivity shows a peak value of 19.3 × 1015 Ω m at a frequency of 100 Hz. The composite material properties are the best when the content of SPEEK is 5 wt%.



This research is supported Harbin Science and Technology Innovation Foundation (Grant Number 2015RAXXJ029).


  1. 1.
    R.J. Iredale, C. Ward, I. Hamerton, Prog. Polym. Sci. 69, 1 (2017)CrossRefGoogle Scholar
  2. 2.
    K. Ohtsuka, H. Kimura, S. Ikeshita, H. Nakao, S. Tsubota, High Perform. Polym. 28, 591 (2016)CrossRefGoogle Scholar
  3. 3.
    M.C. Liu, Y.X. Duan, Y. Wang, Y. Zhao, Mater. Des. 53, 466 (2014)CrossRefGoogle Scholar
  4. 4.
    M.S. Radue, V. Varshney, J.W. Baur, A.K. Roy, G.M. Odegard, Macromolecules 51, 1830 (2018)CrossRefGoogle Scholar
  5. 5.
    D.K. Chakravarthi, V.N. Khabashesku, R. Vaidyanathan, J. Blaine, S. Yarlagadda, D. Roseman, Q. Zeng, E.V. Barrera, Adv. Funct. Mater. 21, 2527 (2011)CrossRefGoogle Scholar
  6. 6.
    Q.F. Cheng, J.W. Bao, J. Park, Z.Y. Liang, C. Zhang, B. Wang, Adv. Funct. Mater. 19, 3219 (2009)CrossRefGoogle Scholar
  7. 7.
    C. Liu, H.X. Yan, Q. Lv, S. Li, S. Niu, Carbon 102, 145 (2016)CrossRefGoogle Scholar
  8. 8.
    B.H. Chen, L. Yuan, Q.B. Guan, G.Z. Liang, A.J. Gu, J. Mater. Sci. 53, 10798 (2018)CrossRefGoogle Scholar
  9. 9.
    Q.T. Pham, J.M. Hsu, W.J. Shao, F.M. Wang, C.S. Chern, Thermochim. Acta 655, 234 (2017)CrossRefGoogle Scholar
  10. 10.
    S.J. He, H.N. Jia, Y.K. Lin, H.X. Qian, J. Lin, Polym. Compos. 37, 2632 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Coulson, L.Q. Cortes, E. Dantras, A. Lonjon, C. Lacabanne, J. Appl. Polym. Sci. 135, 46456 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Dolo, J. Ferec, D. Cartie, Y. Grohens, G. Ausias, Polym. Degrad. Stab. 143, 20 (2017)CrossRefGoogle Scholar
  13. 13.
    M.K. Ahn, B. Lee, J. Jang, C.M. Min, S.B. Lee, C. Pak, J.S. Lee, J. Membr. Sci. 560, 58 (2018)CrossRefGoogle Scholar
  14. 14.
    N.V. Prabhu, D. Sangeetha, Chem. Eng. J. 243, 564 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Oroujzadeh, S. Mehdipour-Ataei, Int. J. Polym. Mater. Polym. Biomater. 65, 330 (2016)CrossRefGoogle Scholar
  16. 16.
    A.R. Kim, M. Vinothkannan, D.J. Yoo, J. Energy. Chem. 27, 1247 (2018)CrossRefGoogle Scholar
  17. 17.
    M.Y. Gang, G.W. He, Z. Li, K.T. Cao, Z.Y. Li, Y.H. Yin, H. Wu, Z.Y. Jiang, J. Membr. Sci. 507, 1 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Doan, E. Kingston, I. Kendrick, K. Anderson, N. Dimakis, P. Knauth, M.L. Di Vona, E.S. Smotkin, Polymer 55, 4671 (2014)CrossRefGoogle Scholar
  19. 19.
    K. Anderson, E. Kingston, J. Romeo, J. Doan, N. Loupe, N. Dimakis, E.S. Smotkin, Polymer 93, 65 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Bae, K. Miyatake, M. Watanabe, Macromolecules 43, 2684 (2010)CrossRefGoogle Scholar
  21. 21.
    C.S. Sipaut, R.F. Mansa, V. Padavettan, I.A. Rahman, J. Dayou, M. Jafarzadeh, Adv. Polym. Technol. 34, 21492 (2015)CrossRefGoogle Scholar
  22. 22.
    S.J. Sun, M.C. Guo, X.S. Yi, Z.G. Zhang, Polym. Bull. 74, 1519 (2017)CrossRefGoogle Scholar
  23. 23.
    X.L. Zeng, S.H. Yu, M.B. Lai, R. Sun, C.P. Wong, Sci. Technol. Adv. Mater. 14, 065001 (2013)CrossRefGoogle Scholar
  24. 24.
    A.V. Babkin, E.M. Erdni-Goryaev, A.V. Solopchenko, A.V. Kepman, V.V. Avdeev, Polym Adv. Technol. 27, 774 (2016)CrossRefGoogle Scholar
  25. 25.
    M.Y. Ge, J.T. Miao, L. Yuan, Q.B. Guan, G.Z. Liang, A.J. Gu, J. Appl. Polym. Sci. 135, 45947 (2018)CrossRefGoogle Scholar
  26. 26.
    W. Chong, L. Lin, Mater. Lett. 194, 38 (2017)CrossRefGoogle Scholar
  27. 27.
    A.L. Feng, G.L. Wu, Y.Q. Wang, C. Pan, J. Nanosci. Nanotechnol. 17, 3859 (2017)CrossRefGoogle Scholar
  28. 28.
    X. Wang, Q. Jiang, W.Z. Xu, W. Cai, Y. Inoue, Y.T. Zhu, Carbon 53, 145 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Pan, K.C. Kou, Y. Zhang, Z.Y. Li, G.L. Wu, Compos. B 153, 1 (2018)CrossRefGoogle Scholar
  30. 30.
    N.Y. Li, Y.G. Li, X.Z. Hao, J. Gao, Compos. Sci. Technol. 106, 15 (2015)CrossRefGoogle Scholar
  31. 31.
    J.F. Zhou, J.J. Wang, K.K. Jin, J. Sun, Q. Fang, Polymer 102, 301 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Qiu, Q.Q. Wu, L. Jin, RSC Adv. 6, 96245 (2016)CrossRefGoogle Scholar
  33. 33.
    Q.F. Cheng, B. Wang, C. Zhang, Z.Y. Liang, Small 6, 763 (2010)CrossRefGoogle Scholar
  34. 34.
    Y. Guo, F.H. Chen, Y. Han, Z. Li, X. Liu, H. Zhou, T. Zhao, J. Polym. Res. 25, 27 (2017)CrossRefGoogle Scholar
  35. 35.
    J.W. Gu, C.B. Liang, J. Dang, W.C. Dong, Q.Y. Zhang, RSC Adv. 6, 35809 (2016)CrossRefGoogle Scholar
  36. 36.
    X.X. Chen, A.J. Gu, G.Z. Liang, L. Yuan, D.X. Zhuo, J.T. Hu, Polym. Degrad. Stab. 97, 698 (2012)CrossRefGoogle Scholar
  37. 37.
    X.C. Han, L. Yuan, A.J. Gu, G.Z. Liang, Compos. B 132, 28 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, M. Aono, ACS Nano 7, 6396 (2013)CrossRefGoogle Scholar
  39. 39.
    Z.D. Wang, J.Y. Liu, Y.H. Cheng, S.Y. Chen, M.M. Yang, J.L. Huang, H.K. Wang, G.L. Wu, H.J. Wu, Nanomaterials 8, 242 (2018)CrossRefGoogle Scholar
  40. 40.
    G.D. Zhou, S.K. Duan, P. Li, B. Sun, B. Wu, Y.Q. Yao, X.D. Yang, J.J. Han, J.G. Wu, G. Wang, L.P. Liao, C.Y. Lin, W. Hu, C.Y. Xu, D.B. Liu, T. Chen, L.J. Chen, A.K. Zhou, Q.L. Song, Adv. Electron. Mater. 4, 1700567 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Engineering Dielectrics and Its Application, Ministry of EducationHarbin University of Science and TechnologyHarbinChina
  2. 2.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  3. 3.Harbin Xiangfang District Center for Disease Control and PreventionHarbinChina

Personalised recommendations