Thermal cycling aging effects on the tensile property and constitute behavior of Sn–3.0Ag–0.5Cu solder alloy

  • Yao YaoEmail author
  • Xuemei Yu


Thermal cycling aging effects on the tensile property of Sn–3.0Ag–0.5Cu solder alloy are investigated experimentally and theoretically. Solder specimens were tested at temperature ranges from 77 to 293 K and 77–398 K with different cyclic numbers. Thermal cycling optimizes the microstructure of solder and causes dislocation, which can enhance both tensile strength and plasticity of solder material. It is observed experimentally that the plasticity of Sn–3.0Ag–0.5Cu solder alloy is strongly time dependent, higher cycle number leads to an increase of plastic strain. A unified creep plasticity constitutive model is developed by modifying the drag strength and taking the effects of temperature and cycling number into account. A new material damage parameter is proposed to consider the temperature effect during the treatment, which is incorporated into the developed model to describe the mechanical behavior of Sn–3.0Ag–0.5Cu solder under thermal cycling. The numerical predictions agree well with the experimental results of Sn–3.0Ag–0.5Cu solder alloys, it shows the developed constitutive model can describe the mechanical properties of Sn–3.0Ag–0.5Cu solder under thermal cycling with reasonable accuracy.



This work was supported by the National Natural Science Foundation of China (Nos. 11572249, 11772257) and the Alexander von Humboldt Fellowship for experienced researchers. The authors acknowledge the help and valuable discussions from Dr. Xu He, Ms. Bingjie Chen and Mr. Kaimin Wang.


  1. 1.
    E.E.M. Noor, A. Singh, Solder. Surf. Mt. Technol. 26, 147–161 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Wei, C.L. Chow, K.J. Lau, P. Vianco, H.E. Fang, J. Electron. Packag. 126, 367–373 (2004)CrossRefGoogle Scholar
  3. 3.
    T.T. Nguyen, D. Yu, S.B. Park, J. Electron. Mater. 40, 1409–1415 (2011)CrossRefGoogle Scholar
  4. 4.
    K.N. Prabhu, P. Deshapande, Satyanarayan, Mater. Sci. Eng. A 533, 64–70 (2012)CrossRefGoogle Scholar
  5. 5.
    K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Eng. A 333, 106–114 (2002)CrossRefGoogle Scholar
  6. 6.
    X. Long, Y. Wang, L.M. Keer, Y. Yao, J. Micromech. Mol. Phys. 01, 1650004 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Yao, X. Long, L.M. Keer, Appl. Mechan. Rev. 69, 040802 (2017)CrossRefGoogle Scholar
  8. 8.
    N. Zhang, Y.W. Shi, Z.D. Xia, Y.P. Lei, F. Guo, X.Y. Li, J. Mater. Sci. Mater. Electron. 20, 499–506 (2009)CrossRefGoogle Scholar
  9. 9.
    H.C. Gong, C.Q. Liu, P.P. Conway, V.V. Silberschmidt, Comput. Mater. Sci. 39, 187–197 (2007)CrossRefGoogle Scholar
  10. 10.
    F.J. Cheng, F. Gao, J.Y. Zhang, W.S. Jin, X. Xiao, J. Mater. Sci. 46, 3424–3429 (2011)CrossRefGoogle Scholar
  11. 11.
    V.L. Niranjani, B.S.S.C. Rao, V. Singh, S.V. Kamat, Mater. Sci. Eng. A 529, 257–264 (2011)CrossRefGoogle Scholar
  12. 12.
    J.H.L. Pang, T.H. Low, B.S. Xiong, L.H. Xu, C.C. Neo, Thin Solid Films 462, 370–375 (2004)CrossRefGoogle Scholar
  13. 13.
    M.A. Matin, E.W.C. Coenen, W.P. Vellinga, M.G.D. Geers, Scr. Mater. 53, 927–932 (2005)CrossRefGoogle Scholar
  14. 14.
    N. Hamada, T. Uesugi, Y. Takigawa, K. Higashi, Mater. Trans. 54, 796–805 (2013)CrossRefGoogle Scholar
  15. 15.
    B. Ali, M.F.M. Sabri, N.L. Sukiman, I. Jauhari, J. Mater. Sci. Mater. Electron. 28, 197–206 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Yao, X. He, L.M. Keer, M.E. Fine, Acta Mater. 83, 160–168 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Bonora, Eng. Fract. Mech. 58, 11–28 (1997)CrossRefGoogle Scholar
  18. 18.
    N. Bonora, G.M. Newaz, Int. J. Solids Struct. 35, 1881–1894 (1998)CrossRefGoogle Scholar
  19. 19.
    T. Borvik, O.S. Hopperstad, T. Berstad, M. Langseth, Int. J. Solids Struct. 38, 6241–6264 (2001)CrossRefGoogle Scholar
  20. 20.
    X. Chen, G. Chen, M. Sakane, IEEE Trans. Compon. Packag. Technol. 28, 111–116 (2005)CrossRefGoogle Scholar
  21. 21.
    ASM Metals, Handbook Volume 08-Mechanical TESTING & Evaluation (ASM International, Materials Park, 2000)Google Scholar
  22. 22.
    Y.L. Li, J. Chongqing Univ. 1, 58–60 (2001)Google Scholar
  23. 23.
    Y. Ding, C.Q. Wang, Y.H. Tian, M.Y. Li, J. Alloys Compd. 428, 274–285 (2007)CrossRefGoogle Scholar
  24. 24.
    F. Qin, T. An, X.M. Wang, J. Beijing Univ. Technol. 39, 14–18 (2013)Google Scholar
  25. 25.
    F. Wang, L.M. Keer, S. Vaynman, S. Wen, IEEE Trans. Compon. Packag. Technol. 27, 718–723 (2004)CrossRefGoogle Scholar
  26. 26.
    X. He, Y. Yao, Int. J Solids Struct. 120, 236–244 (2017)CrossRefGoogle Scholar
  27. 27.
    D.L. Mcdowell, Int. J. Plast. 8, 695–728 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanics, Civil Engineering and ArchitectureNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Max Planck Inst Eisenforsch GmbHDusseldorfGermany

Personalised recommendations