Advertisement

Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1−xO2 (0 ≤ x ≤ 1) films prepared by the ALD method

  • V. V. AtuchinEmail author
  • M. S. Lebedev
  • I. V. Korolkov
  • V. N. Kruchinin
  • E. A. Maksimovskii
  • S. V. Trubin
Article

Abstract

The optical quality HfxTi1−xO2 films with a wide range of the Hf/Ti ratio were prepared on Si (100) substrates by the ALD method with the use of tetrakis(ethylmethylamido)hafnium(IV) (Hf(NC2H5CH3)4, TEMAH) and titanium(IV) chloride TiCl4 as Hf and Ti precursors, respectively. The H2O vapor was applied as oxygen source. The structural properties of the as-deposited and annealed films were evaluated by the XRD analysis. The Hf/Ti ratio in the films was measured by energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The dispersive optical constants were obtained by spectroscopic ellipsometry over the photon energy range of E = 1.12–4.96 eV. The specific growth kinetics is observed for 0 < x < 1. The optical constants wide-range tuning is reached in the HfxTi1−xO2 (x = 0–1) films via the chemical composition variation and annealing.

Notes

Acknowledgements

The NIIC team works according to the Government Assignment No. V.45.1.5. The reported study was funded by RFBR according to the research project 16-52-48010 and 17-52-53031.

Supplementary material

10854_2018_351_MOESM1_ESM.docx (242 kb)
Supplementary material 1 (DOCX 242 KB)

References

  1. 1.
    J. Robertson, Maximizing performance for higher Κ gate dielectrics. J. Appl. Phys. 104, 124111 (2008)Google Scholar
  2. 2.
    T. Hitosugi, N. Yamada, S. Nakao, Y. Hirose, T. Hasegawa, Properties of TiO2-based transparent conducting oxides. Phys. Status Solidi A 207(7), 1529–1537 (2010)Google Scholar
  3. 3.
    A. Ohta, Y. Goto, G. Wei, H. Murakami, S. Higashi, S. Miyazaki, Evaluation of chemical structure and resistive switching characteristics of undoped titanium oxide and titanium-yttrium mixed oxide. Jpn. J. Appl. Phys. 50, 10PH02 (2011)Google Scholar
  4. 4.
    C.-Y. Lu, Future prospects of NAND flash memory technology—the evolution from floating gate to charge trapping to 3D stacking. J. Nanosci. Nanotechnol. 12, 7604–7618 (2012)Google Scholar
  5. 5.
    H. Dong, W. Cabrera, R.V. Galatage, K.C. Santosh, B. Brennan, X. Qin, S. McDonnell, D. Zhernokletov, C.L. Hinkle, K. Cho, Y.J. Chabal, R.M. Wallace, Indium diffusion through high-κ dielectrics in high-κ/InP stacks. Appl. Phys. Lett. 103, 061601 (2013)Google Scholar
  6. 6.
    Y.H. Wong, V.V. Atuchin, V.N. Kruchinin, K.Y. Cheong, Physical and dispersive optical characteristics of ZrON/Si thin-film system. Appl. Phys. A 115, 1069–1072 (2014)Google Scholar
  7. 7.
    C.H. Cheng, A. Chin, Low-voltage steep turn-on pMOSFET using ferroelectric high-κ gate dielectric. IEEE Electron Device Lett. 35(2) 274–276 (2014)Google Scholar
  8. 8.
    V.A. Gritsenko, T.V. Perevalov, D.R. Islamov, Electronic properties of hafnium oxide: a contribution from defects and traps. Phys. Rep. 613, 1–20 (2016)Google Scholar
  9. 9.
    V.M. Kalygina, I.S. Egorova, I.A. Prudaev, O.P. Tolbanov, V.V. Atuchin, Photoelectrical characteristics of TiO2-n-Si heterostructures. Microw. Opt. Technol. Lett. 58(8), 1113–1116 (2016)Google Scholar
  10. 10.
    C. Wiemer, L. Lamagna, S. Baldovino, M. Perego, S. Schamm-Chardon, P.E. Coulon, O. Salicio, G. Congedo, S. Spiga, M. Fanciulli, Dielectric properties of Er-doped HfO2 (Er ~ 15%) grown by atomic layer deposition for high-κ gate stacks. Appl. Phys. Lett. 96, 182901 (2010)Google Scholar
  11. 11.
    T.P. Smirnova, M.S. Lebedev, N.B. Morozova, P.P. Semyannikov, K.V. Zherikova, V.V. Kaichev, Y.V. Dubinin, MOCVD and physicochemical characterization of (HfO2)x(Al2O3)1–x thin films. Chem. Vapor Depos. 16(4–6), 185–190 (2010)Google Scholar
  12. 12.
    T.-M. Pan, L.-C. Yen, X.-C. Wu, A comparative study on the structural properties and electrical characteristics of thin HoTixOy, TmTixOy and YbTixOy dielectrics. Semicond. Sci. Technol. 25, 055015 (2010)Google Scholar
  13. 13.
    H. Li, L. Lin, J. Robertson, Identifying a suitable passivation route for Ge interfaces. Appl. Phys. Lett. 101, 052903 (2012)Google Scholar
  14. 14.
    V.V. Kaichev, T.P. Smirnova, L.V. Yakovkina, E.V. Ivanova, M.V. Zamoryanskaya, A.A. Saraev, V.A. Pustovarov, T.V. Perevalov, V.A. Gritsenko, Structure, chemistry and luminescence properties of dielectric LaxHf1–xOy films. Mater. Chem. Phys. 175, 200–205 (2016)Google Scholar
  15. 15.
    C. Ye, H. Wang, J. Zhang, Y. Ye, Y. Wang, B.Y. Wang, Y.C. Jin, Composition dependence of band alignment and dielectric constant for Hf1–xTixO2 thin films on Si (100). J. Appl. Phys. 107, 104103 (2010)Google Scholar
  16. 16.
    M. Liu, L.D. Zhang, G. He, X.J. Wang, M. Fang, Effect of Ti Incorporation on the interfacial and optical properties of HfTiO thin films. J. Appl. Phys. 108, 024102 (2010)Google Scholar
  17. 17.
    Q. Tao, A. Kueltzo, M. Singh, G. Jursich, Ch.G. Takoudis, Atomic layer deposition of HfO2, TiO2, and HfxTi1–xO2 using metal (diethylamino) precursors and H2O. J. Electrochem. Soc. 158(2), G27–G33 (2011)Google Scholar
  18. 18.
    D.R. Islamov, V.A. Gritsenko, C.H. Cheng, A. Chin, Bipolar conductivity in nanocrystallized TiO2. Appl. Phys. Lett. 101(3), 032101 (2012)Google Scholar
  19. 19.
    D.R. Islamov, V.A. Gritsenko, C.H. Cheng, A. Chin, Origin of traps and charge transport mechanism in hafnia. Appl. Phys. Lett. 105(22), 222901 (2014)Google Scholar
  20. 20.
    P. Jin, G. He, M. Liu, D.Q. Xiao, J. Gao, X.F. Chen, R. Ma, J.W. Zhang, M. Zhang, S.Q. Sun, Y.M. Liu, Deposition-power-modulated optical and electrical properties of sputtering-derived HfTiOx gate dielectrics. J. Alloys Compd. 649, 128–134 (2015)Google Scholar
  21. 21.
    V.M. Kalygina, I.S. Egorova, I.A. Prudaev, O.P. Tolbanov, V.V. Atuchin, Conduction mechanism of metal-TiO2–Si structures. Chin. J. Phys. 55, 59–63 (2017)Google Scholar
  22. 22.
    J.P. Coutures, J. Coutures, The system HfO2-TiO2. J. Am. Ceram. Soc. 70(6), 383–387 (1987)Google Scholar
  23. 23.
    M.A. Krebs, R.A. Condrate, A Raman spectral characterization of various crystalline mixtures in the ZrO2-TiO2 and HfO2-TiO2 systems. J. Mater. Sci. Lett. 7, 1327–1338 (1988)Google Scholar
  24. 24.
    D. Errandonea, D. Santamaria-Perez, T. Bondarenko, O. Khyzhun, New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Mater. Res. Bull. 45, 1732–1735 (2010)Google Scholar
  25. 25.
    A.A. Lavrentiev, B.V. Gabrelian, P.N. Shkumat, I.Ya. Nikiforov, T.N. Bondarenko, E.I. Kopylova, O.Yu. Khyzhun, M.V. Karpets, J.J. Rehr, Electronic structure of ZrTiO4 and HfTiO4: self-consistent cluster calculations and X-ray spectroscopy studies. J. Phys. Chem. Solids 72, 83–89 (2011)Google Scholar
  26. 26.
    K. Fiaczyk, A.J. Wojtowics, E. Zych, Photoluminescent properties of monoclinic HfO2:Ti sintered ceramics in 16–300 K. J. Phys. Chem. C 119(9), 5026–5036 (2015)Google Scholar
  27. 27.
    M.C. Cisneros-Morales, C.R. Aita, Optical absorption at its onset in sputter deposited hafnia-titania nanolaminates. J. Appl. Phys. 108, 123506 (2010)Google Scholar
  28. 28.
    C. Ye, H. Wang, J. Zhang, J. Zhang, H. Wang, Y. Jiang, Evidence of interface conversion and electrical characteristics improvement of ultra-thin HfTiO films upon rapid thermal annealing. Appl. Phys. Lett. 99, 182904 (2011)Google Scholar
  29. 29.
    Q. Lu, Y. Mu, J.W. Roberts, M. Althobaiti, V.R. Dhanak, J. Wu, Ch Zhao, C.Zh. Zhao, Q. Zhang, L. Yang, I.Z. Mitrovich, S. Taylor, P.R. Chalker, Electrical properties and interfacial studies of HfxTi1–xO2 high permittivity gate insulators deposited on germanium substrates. Materials 8, 8169–8182 (2015)Google Scholar
  30. 30.
    M. Werner, P.J. King, S. Hindley, S. Romani, S. Mather, P.R. Chalker, P.A. Williams, J.A. van den Berg, Atomic layer deposition of Ti-HfO2 dielectrics. J. Vac. Sci. Technol. A 31, 01A102 (2013)Google Scholar
  31. 31.
    B. Chakrabarti, R.V. Galatage, E.M. Vogel, Multilevel switching in forming-free resistive memory devices with atomic layer deposited HfTiOx nanolaminate. IEEE Electron Device Lett. 34, 867–869 (2013)Google Scholar
  32. 32.
    W. Kern, The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137(6), 1887–1892 (1990)Google Scholar
  33. 33.
    M. Itano, F.W. Kern, M. Miyashita, T. Ohmi, Particle removal from silicon wafer surface in wet cleaning process. IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993)Google Scholar
  34. 34.
    K.A. Kokh, V.V. Atuchin, T.A. Gavrilova, A. Kozhukhov, E.A. Maximovskiy, L.D. Pokrovsky, A.R. Tsygankova, A.I. Saprykin, Defects in GaSe grown by Bridgman method. J. Microscopy 256(3), 208–212 (2014)Google Scholar
  35. 35.
    S.Ya. Khmel, E.A. Baranov, A.V. Zaikovskii, A.O. Zamchiy, E.A. Maximovskiy, D.V. Gulyaev, K.S. Zhuravlev, Synthesis of silicon oxide nanowires by the GJ EBP CVD method using different diluent gases. Phys. Status Solidi A 213(7), 1774–1782 (2016)Google Scholar
  36. 36.
    C.V. Ramana, R.S. Vemuri, V.V. Kaichev, V.A. Kochubey, A.A. Saraev, V.V. Atuchin, X-ray photoelectron spectroscopy depth profiling of La2O3/Si thin films deposited by reactive magnetron sputtering. ACS Appl. Mater. Interfaces 3(11), 4370–4373 (2011)Google Scholar
  37. 37.
    E.J. Rubio, V.V. Atuchin, V.N. Kruchinin, L.D. Pokrovsky, I.P. Prosvirin, C.V. Ramana, Electronic structure and optical quality of nanocrystalline Y2O3 film surfaces and interfaces on silicon. J. Phys. Chem. C 118(25), 13644–13651 (2014)Google Scholar
  38. 38.
    A.H. Reshak, Z.A. Alahmed, J. Bila, V.V. Atuchin, B.G. Bazarov, O.D. Chimitova, M.S. Molokeev, I.P. Prosvirin, A.P. Yelisseyev, Exploration of the electronic structure of monoclinic α-Eu2(MoO4)2: DFT-based study and X-ray photoelectron spectroscopy. J. Phys. Chem. C 120, 10559–10568 (2016)Google Scholar
  39. 39.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben (eds.), Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Physical Electronics Division, Minnesota, 1992)Google Scholar
  40. 40.
    J.H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976)Google Scholar
  41. 41.
    S.V. Rykhlitski, E.V. Spesivtsev, V.A. Shvets, V.Y. Prokopiev, Instrum. Exp. Tech. 2, 160–161 (2007) (in Russian)Google Scholar
  42. 42.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007)Google Scholar
  43. 43.
    V.V. Atuchin, V.A. Golyashov, K.A. Kokh, I.V. Korolkov, A.S. Kozhukhov, V.N. Kruchinin, S.V. Makarenko, L.D. Pokrovsky, I.P. Prosvirin, K.N. Romanyuk, O.E. Tereshchenko, Formation of inert Bi2Se3(0001) cleaved surface. Cryst. Growth Des. 11(12), 5507–5514 (2011)Google Scholar
  44. 44.
    C.V. Ramana, V.H. Mudavakkat, K. Kamala Bharathi, V.V. Atuchin, L.D. Pokrovsky, V.N. Kruchinin, Enchanced optical constants of nanocrystalline yttrium oxide thin films. Appl. Phys. Lett. 98, 031905 (2011)Google Scholar
  45. 45.
    D.A. Holmes, On the calculation of thin film refractive index and thickness by ellipsometry. Appl. Opt. 6(1), 168–169 (1967)Google Scholar
  46. 46.
    V.N. Kruchinin, T.V. Perevalov, V.V. Atuchin, V.A. Gritsenko, A.I. Komonov, I.V. Korolkov, L.D. Pokrovsky, C.W. Shih, A. Chin, Optical properties of TiO2 films deposited breactive electron beam sputtering. J. Electron. Mater. 46(10), 6089–6095 (2017)Google Scholar
  47. 47.
    G.E. Jellison, F.A. Modine, Parameterization of the optical functions of amorphous materials in the infrared region. Appl. Phys. Lett. 69(3), 371–373 (1996)Google Scholar
  48. 48.
    K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskelä, Atomic layer deposition of hafnium dioxide films from hafnium tetrakis(ethylmethylamide) and water. Chem. Vapor Depos. 8(5), 199–204 (2002)Google Scholar
  49. 49.
    X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang, R.G. Gordon, ALD of hafnium oxide thin films from tetrakis(ethylmethylamino) hafnium and ozone. J. Electrochem. Soc. 152(3), G213–G219 (2005)Google Scholar
  50. 50.
    D.W. McNeil, S. Bhattacaraya, H. Wadsworth, F.H. Ruddel, S.J.N. Mitchel, B.M. Armstrong, H.S. Gamble, Atomic layer deposition of hafnium oxide dielectrics on silicon and germanium substrates. J. Mater. Sci.: Mater. Electron. 19(3), 119–123 (2008)Google Scholar
  51. 51.
    L. Nyns, A. Delable, J. Swerts, S. Van Elshocht, S. De Gendt, ALD and parasitic growth characteristics of the tetrakisethylmethylamino hafnium (TEMAH)/H2O process. J. Electrochem. Soc. 157(11), G225–G229 (2010)Google Scholar
  52. 52.
    J. Gope, N. Vandana, J. Batra, R. Panigrahi, K.K. Singh, R. Maurya, P.K. Srivastava, Singh, Silicon surface passivation using thin HfO2 films by atomic layer deposition. Appl. Surf. Sci. 357, 635–642 (2015)Google Scholar
  53. 53.
    D.R. Islamov, V.A. Gritsenko, M.S. Lebedev, Determination of trap density in hafnia films prodused by two atomic layer deposition techniques. Microelectron. Eng. 178, 104–107 (2017)Google Scholar
  54. 54.
    Y.J. Kim, D. Lim, H.H. Han, A.S. Sergeevich, Y.-R. Jeon, J.H. Lee, S.K. Son, Ch. Choi, The effect of process temperature on the work function modulation of ALD HfO2 MOS device with plasma enhanced ALD TiN metal gate using TDMAT precursor. Microelectron. Eng. 178, 284–288 (2017)Google Scholar
  55. 55.
    S.I. Kol’tsov, Production and investigation of reaction products of titanium tetrachloride with silica gel. Zh. Prikl. Khim. 42, 1023 (1969) [J. Appl. Chem. USSR 42 (1969) 975]Google Scholar
  56. 56.
    J. Aaric, A. Aidla, H. Mändar, T. Uustare, Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism. Appl. Surf. Sci. 172, 148–158 (2001)Google Scholar
  57. 57.
    H.-E. Cheng, Ch.-Ch. Chen, Morphological and photoelectrochemical properties of ALD TiO2 films. J. Electrochem. Soc. 155, D604–D607 (2008)Google Scholar
  58. 58.
    W. Chiappim, G.E. Testoni, J.S.B. de Lima, H.S. Medeiros, R.S. Pessoa, K.G. Grigorov, L. Vieira, H.S. Maciel, Effect of process temperature and reaction cycle number on atomic layer deposition of TiO2 thin films using TiCl4 and H2O precursors: correlation between material properties and process environment. Braz. J. Phys. 46, 56–69 (2016)Google Scholar
  59. 59.
    M.M. Plakhotnyuk, N. Schüler, E. Shkodin, R.A. Vijayan, S. Masilamani, M. Varadharajaperumal, A. Crovetto, O. Hansen, Surface passivation and carrier selectivity of the thermal-atomic-layer-deposited TiO2 on crystalline silicon. Jpn. J. Appl. Phys. 56, 08MA11 (2017)Google Scholar
  60. 60.
    A. Bronneberg, Ch. Höhn, R. van de Krol, Probing the interfacial chemistry of ultrathin ALD-grown TiO2 films: an in-line XPS study. J. Phys. Chem. C 121, 5531–5538 (2017)Google Scholar
  61. 61.
    M.S. Lebedev, V.N. Kruchinin, M.I. Lebedeva, E.V. Spesivtsev, Compositionally tunable optical properties of hafnium titanium oxide deposited by atomic layer deposition without intermediate surface hydroxylation. Thin Solid Films 642, 103–109 (2017)Google Scholar
  62. 62.
    H. Hernandez-Arriaga, E. Lopez-Luna, E. Martinez-Guerra, M.M. Tuttubiartes, A.G. Rodriguez, M.A. Vidal, Growth of HfO2/TiO2 nanolaminates by atomic layer deposition and HfO2-TiO2 by atomic partial layer deposition. J. Appl. Phys. 121, 064302 (2017)Google Scholar
  63. 63.
    M. Ritala, M. Leslelä, E. Rauhala, Atomic layer epitaxy growth of titanium dioxide thin films from titanium ethoxide. Chem. Mater. 6, 556–561 (1994)Google Scholar
  64. 64.
    R.L. Puurunen, Formation of metal oxide particles in atomic layer deposition during the chemisorption of metal chlorides: a review, Chem. Vapor Depos. 11, 79–90 (2005)Google Scholar
  65. 65.
    T. Arroval, L. Aarik, R. Rammula, J. Aarik, Growth of TixAl1–xOy films by atomic layer deposition using successive supply of metal precursors. Thin Solid Films 591, 276–284 (2015)Google Scholar
  66. 66.
    W.-J. Lee, M.-H. Hon, Space limited crystal growth mechanism of TiO2 films by atomic layer deposition. J. Phys. Chem. C 114, 6917–6921 (2010)Google Scholar
  67. 67.
    I.K. Pitaver, R. Peter, I. Šaric, K. Salamon, I.J. Badovinac, K. Koshmak, S. Nannarone, I.D. Marion, M. Petravić, Controlling the grain size of polycrystalline TiO2 films grown by atomic layer deposition. Appl. Surf. Sci. 419, 564–572 (2017)Google Scholar
  68. 68.
    J.W. Elam, S.M. George, Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques. Chem. Mater. 15, 1020–1028 (2003)Google Scholar
  69. 69.
    A.U. Mane, J.W. Elam, Atomic layer deposition of W:Al2O3 nanocomposite films with tunable resistivity. Chem. Vapor Depos. 19, 186–193 (2013)Google Scholar
  70. 70.
    M. Popovici, A. Delabie, S. van Elshocht, S. Clima, G. Pourtois, L. Nyns, K. Tomida, N. Menou, K. Opsomer, J. Swerts, C. Detavernier, D. Wouters, J.A. Kittl, Growth and material characterization of hafnium titanates deposited by atomic layer deposition. J. Electrochem. Soc. 156(10), G145–G151 (2009)Google Scholar
  71. 71.
    R. Ruh, H.J. Garrett, R.F. Domagala, N.M. Tallan, The system zirconia–hafnia. J. Am. Ceram. Soc. 51(1), 23–28 (1968)Google Scholar
  72. 72.
    A.Y. Leinekugel-le-Cocq-Errien, P. Deniard, S. Jobic, E. Gautier, M. Evain, V. Aubin, F. Bart, Structural characterization of the hollandite host lattice for the confinement of radioactive cesium: quantification of the amorphous phase taking into account the incommensurate modulated character of the crystallized part. J. Solid State Chem. 180(1), 322–330 (2007)Google Scholar
  73. 73.
    M. Mazur, D. Kacmarek, J. Domaradzki, D. Wojcieszak, A. Poniedzialek, Influence of material composition on structural and optical properties of HfO2-TiO2 mixed oxide coatings. Coatings 6(1), 13 (2016)Google Scholar
  74. 74.
    A. Harari, J.P. Bocquet, M. Huber, R. Collongues, Crystal structure of the mixed oxide HfTiO4. C. R. Hebd. Seances Acad. Sci. Ser. C 267, 1316–1318 (1968) (in French)Google Scholar
  75. 75.
    D.H. Triyoso, R.I. Hegde, S. Zollner, M.E. Ramon, S. Kalpat, R. Gregory, X.-D. Wang, J. Jiang, M. Raymond, R. Rai, D. Werho, D. Roan, B.E. White Jr., P.J. Tobin, Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition. J. Appl. Phys. 98, 054104 (2005)Google Scholar
  76. 76.
    M. Li, Z. Zhang, S.A. Campbell, H.-J. Li, J.J. Peterson, Hafnium titanate as a high permittivity gate insulator: electrical and physical characteristics and thermodynamic stability. J. Appl. Phys. 101, 044509 (2007)Google Scholar
  77. 77.
    K. Tomida, M. Popovici, K. Opsomer, N. Menou, W.C. Wang, A. Delabie, J. Swerts, J. Stennbergen, B. Kaczer, S.V. Elshocht, C. Detavernier, V.V. Afanas’ev, D.J. Wouters, J.A. Kittl, Non-linear dielectric constant increase with Ti composition in high-k ALD HfTiOx films after O2 crystallization annealing. IOP Conf. Ser.: Mater. Sci. Eng. 8, 012023 (2010)Google Scholar
  78. 78.
    V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, Z. Zhang, Ti 2p and O 1 s core levels and chemical bonding in titanium-bearing oxides. J. Electron Spectrosc. Relat. Phenom. 152, 18–24 (2006)Google Scholar
  79. 79.
    V.V. Atuchin, V.G. Kesler, N.Yu. Maklakova, L.D. Pokrovsky, V.N. Semenenko, Study of KTiOPO4 surface by X-ray photoelectron spectroscopy and reflection high-energy electron diffraction. Surf. Interface Anal. 34, 320–323 (2002)Google Scholar
  80. 80.
    V.V. Atuchin, L.D. Pokrovsky, V.G. Kesler, N.Yu. Maklakova, V.I. Voronkova, V.K. Yanovslii, Superstructure formation and X-ray photoemission properties of the TlTiOPO4 surface. Surf. Rev. Lett. 11(2), 191–198 (2004)Google Scholar
  81. 81.
    V.S. Aliev, A.K. Gerasimova, V.N. Kruchinin, V.A. Gritsenko, I.P. Prosvirin, I.A. Badmaeva, The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition. Mater. Res. Express 3(8), 085008 (2016)Google Scholar
  82. 82.
    R. Watanabe, Y. Eguchi, T.Takuya Yamada, Y. Saito, Optical properties of spin-coated TiO2 antireflection films on textured single-crystalline silicon substrates, Int. J. Photoenergy 2015, 147836 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Optical Materials and StructuresInstitute of Semiconductor Physics, SB RASNovosibirskRussia
  2. 2.Laboratory of Semiconductor and Dielectric MaterialsNovosibirsk State UniversityNovosibirskRussia
  3. 3.Laboratory of Functional Films and CoatingsNikolaev Institute of Inorganic Chemistry, SB RASNovosibirskRussia
  4. 4.Laboratory of Crystal ChemistryNikolaev Institute of Inorganic Chemistry, SB RASNovosibirskRussia
  5. 5.Laboratory of Research Methods of Composition and Structure of Functional MaterialsNovosibirsk State UniversityNovosibirskRussia
  6. 6.Laboratory for Ellipsometry of Semiconductor Materials and StructuresInstitute of Semiconductor Physics, SB RASNovosibirskRussia
  7. 7.Laboratory for Chemistry of Volatile Coordination and Metallorganic CompoundsNikolaev Institute of Inorganic Chemistry, SB RASNovosibirskRussia

Personalised recommendations