Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials

  • H. El-Ghtami
  • A. LarefEmail author
  • S. Laref


Methylammonium (MA) and formamidinium (FA) lead trihalide perovskites, such as MAPbI3, and FAPbI3 materials are propitious contenders for solar cells and photovoltaic functionalities because they illustrate band gaps of about 1.5 eV or more. Herein, we scrutinized the electronic structures and optical features of MAPbI3 and FAPbI3 halide perovskites using full-potential linearized augmented plane-wave calculations. The structural parameters were acquired using the generalized gradient approximation. The FAPbI3 halide perovskite was found to display lower stability than the MAPbI3 material. The total and partial density of states (DOS) were established for these two halide perovskites, in order to reveal the DOS localization for each atomic element by employing the modified Becke–Johnson (TB-mBJ) potential for the exchange–correlation term. The overall optical spectra were also examined over photon energy for these promising systems, involving the dielectric function, absorption coefficient, optical reflectivity, refractive index, and electron energy-loss function. The results of our theoretical investigations are in accordance with the currently published experimental evidence and should be effective in generating novel materials with tremendous functionalities in photovoltaic devices.



We acknowledge the financial support by a grant from the “Research Center of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.


  1. 1.
    A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Chem. Lett. 41, 397 (2012)CrossRefGoogle Scholar
  2. 2.
    Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy Environ. Sci. 7, 2619 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H.J. Snaith, Nano Lett. 14(6), 3247 (2014)CrossRefGoogle Scholar
  4. 4.
    G.E. Epron, V.M. Burlakov, A. Goriely, H.J. Snaith, ACS Nano 8, 591 (2014)CrossRefGoogle Scholar
  5. 5.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett., 13, 1764 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Bi, S.J. Moon, L. Haggman, G. Boschloo, L. Yang, E.M.J. Johansson, M.K. Nazeerudin, M. Graetzel, RSC Adv. 3, 18762 (2013)CrossRefGoogle Scholar
  7. 7.
    W. Abu-Laban, L. Etgar, Energy Environ. Sci. 6, 3249 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Q. Meng, Appl. Phys. Lett. 104, 063901 (2014)CrossRefGoogle Scholar
  9. 9.
    G.E. Epron, S.D. Stranks, C. Manelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, Chem. Mater. 26, 1485 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Aharon, B.E. Cohen, L. Etgar, J. Phys. Chem. C118, 17160 (2014)Google Scholar
  12. 12.
    L. Barnea-Nehoshtan, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 5, 2408 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Zhao, A.M. Nardes, K. Zhu, J. Phys. Chem. Lett. 5, 490 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 4, 2880 (2013)CrossRefGoogle Scholar
  15. 15.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Graetzel, Nat. Mater. 13, 838 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Collavini, S.F. Völker, J.L. Delgado, Angew. Chem. Int. Ed. 54(34), 9757 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X.C. Zeng, J. Huang, Adv. Mater. 27, 1912 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Saliba, W. Zhang, V.M. Burlakov, S.D. Stranks, Y. Sun, J.M. Ball, M.B. Johnston, A. Goriely, U. Wiesner, H.J. Snaith, Adv. Funct. Mater. 25, 5038 (2015)CrossRefGoogle Scholar
  20. 20.
    J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Gratzel, A. Hagfeldt, Energy Environ. Sci. 8, 2928 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G.J. Matt, H. Azimi, C.J. Brabec, J. Stangl, M.V. Kovalenko, W. Heiss, Nat. Photonics 9, 444 (2015)CrossRefGoogle Scholar
  22. 22.
    Li. Hangqian, Li. Shipin, Y. Wang, H. Savari, M. Wang, Z. Chen, Solar Energy 126, 243–251 (2016)CrossRefGoogle Scholar
  23. 23.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019–9038 (2013)CrossRefGoogle Scholar
  24. 24.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H. Snaith, J. Sci. 338, 643–647 (2012)Google Scholar
  25. 25.
    H.S. Kim et al., Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Burschka et al., Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Liu, M.B. Johnston, H. Snaith, J. Nat. 501, 395–398 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Kato et al., Appl. Phys. 121, 115501 (2017)CrossRefGoogle Scholar
  29. 29.
    B.C. O’Regan et al., J. Am. Chem. Soc. 137, 5087–5099 (2015)CrossRefGoogle Scholar
  30. 30.
    Y.Y. Dang, Y. Liu, Y.X. Sun, D.S. Yuan, X.L. Liu, W.Q. Lu, G.F. Liu, H.B. Xia, X.T. Tao, CrystEngComm 17, 665 (2015)CrossRefGoogle Scholar
  31. 31.
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 96 (2015)Google Scholar
  32. 32.
    G.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila, H.J. Bolink, Adv. Mater. 27, 1837 (2015)CrossRefGoogle Scholar
  33. 33.
    R.K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, E.A. Katz, J. Phys. Chem. Lett. 6, 326 (2015)CrossRefGoogle Scholar
  34. 34.
    M.K. Nazeeruddin, H. Snaith, Mrs. Bull. 40, 641 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Korshunova, L. Winterfeld, W.J.D. Beenken, E. Runge, Phys. Status Solidi B 253, 1907 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Shamsi, A.L. Abdelhady, S. Accornero, M. Arciniegas, L. Goldoni, A.R.S. Kandada, A. Petrozza, L. Mann, ACS Energy Lett. 1, 1042 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Yang, Y. Wang, P. Liu, Y.-B. Cheng, H.J. Zhao, H.G. Yang, Nat. Energy 1, 15016 (2016)CrossRefGoogle Scholar
  38. 38.
    Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y.M. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Adv. Mater. 28, 2253 (2016)CrossRefGoogle Scholar
  39. 39.
    A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, O. M. Bakr, ACS Energy Lett. 1, 32 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Bai, N. Cheng, Z. Yu, P. Liu, C. Wang, X.Z. Zhao, Electrochim. Acta 190, 775 (2016)CrossRefGoogle Scholar
  41. 41.
    A.M.A. Leguy et al., Nanoscale 8, 6317 (2016)CrossRefGoogle Scholar
  42. 42.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001)Google Scholar
  43. 43.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1386 (1997)CrossRefGoogle Scholar
  44. 44.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)CrossRefGoogle Scholar
  45. 45.
    W. Huang, J.S. Manser, P.V. Kamat, S. Ptasinska, Chem. Mater. 28, 303 (2016)CrossRefGoogle Scholar
  46. 46.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)CrossRefGoogle Scholar
  47. 47.
    P. Lopper et al., J. Phys. Chem. Lett. 6, 66 (2015)CrossRefGoogle Scholar
  48. 48.
    M.T. Weller, O.J. Weber, J.M. Frost, A.J. Walsh, Phys. Chem. Lett. 6, 3209 (2015)CrossRefGoogle Scholar
  49. 49.
    A. Binek, F.C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett. 6, 1249 (2015)CrossRefGoogle Scholar
  50. 50.
    D. Shi, V. Adinolfi, R. Comin et al., Science 347(6221), 519 (2015)CrossRefGoogle Scholar
  51. 51.
    Y. Wang, T. Sun, D.J. Yang, H.W. Liu, H.M. Zhang, X.D. Yao, H.J. Zhao, Phys. Chem. Chem. Phys. 14, 2333 (2012)CrossRefGoogle Scholar
  52. 52.
    Y. Wang, H.M. Zhang, P.R. Liu, X.D. Yao, H.J. Zhao, RSC Adv. 3, 8777 (2013)CrossRefGoogle Scholar
  53. 53.
    G.E. Eperon et al., Energy Environ. Sci. 7, 982 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations