High performance fiber-shaped all-solid-state symmetric supercapacitor based on mesoporous CuCo2S4 nanosheets

  • Jiqiu Qi
  • Xiaofeng Liu
  • Yanwei Sui
  • Yezeng He
  • Yaojian RenEmail author
  • Qingkun Meng
  • Fuxiang Wei
  • Xuping ZhangEmail author


Flexible and efficient fiber-shaped supercapacitors are being widely studied due to their enormous potential applications in portable electronics. Mesoporous CuCo2S4 nanosheets were prepared firstly on Ni wires (NW) with hydrothermal route and two same NW@CuCo2S4 electrodes were used to assemble a fiber-shaped all-solid-state symmetric supercapacitor. Electrochemical investigation demonstrated that as-fabricated device displayed good performances with high specific capacitance of 35.83 mF cm−2 at 1 mA cm−2 and high energy density of 7.2 µWh cm−2 at power density of 599.9 µW cm−2. In addition, the flexibility of the fiber-shaped supercapacitor was good and two devices in series can light up a red LED for more than 15 s. These results indicating its excellent comprehensive performance, which can meet the demand of practical applications in portable electronic devices.



This work was financially supported by “the Fundamental Research Funds for the Central Universities” (No. 2018GF08).


  1. 1.
    B. Zhu, S. Tang, S. Vongehr, H. Xie, J. Zhu, X. Meng, FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem. Commun. 52, 2624–2627 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Zhou, K. Zhou, X. Liu, R. Hu, H. Liu, S. Chen, Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers. J. Mater. Chem. A 2, 7250–7255 (2014)CrossRefGoogle Scholar
  3. 3.
    W. Zhou, X. Liu, Y. Sang, Z. Zhao, K. Zhou, H. Liu, S. Chen, Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. ACS Appl. Mater. Interfaces 6, 4578–4586 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Gu, Z. Lou, X. Ma, G. Shen, CuCo2O4 nanowires grown on a Ni wire for high-performance. flexible fiber supercapacitors. ChemElectroChem 2, 1042–1047 (2015)CrossRefGoogle Scholar
  5. 5.
    Q. Qu, S. Yang, X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23, 5574–5580 (2011)CrossRefGoogle Scholar
  6. 6.
    C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Zhong, J. Meng, Z. Yang, P. Poulin, N. Koratkar, Shape memory fiber supercapacitors. Nano Energy 17, 330–338 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Jin, L. Zhou, C.L. Mak, H. Huang, W.M. Tang, H.L.W. Chan, High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy 11, 662–670 (2015)CrossRefGoogle Scholar
  9. 9.
    S.T. Senthilkumar, J. Kim, Y. Wang, H. Huang, Y. Kim, Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes. J. Mater. Chem. A 4, 4934–4940 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Li, X. Yan, X. Zheng, H. Si, M. Li, Y. Liu, Y. Sun, Y. Jiang, Y. Zhang, Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage. J. Mater. Chem. A 4, 17704–17710 (2016)CrossRefGoogle Scholar
  11. 11.
    X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16, 71–80 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji, W. Li, J. Lu, L. Li, W. Niu, H. Liu, S. Chen, Ultrathin MoO3 nanocrystals self-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Xu, B. Wei, Z. Cao, J. Zheng, K. Gong, F. Li, J. Yu, Q. Li, W. Lu, J.-H. Byun, B.-S. Kim, Y. Yan, T.-W. Chou, Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9, 6088–6096 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, X. Zhao, Z. Huang, T. Xu, Q. Zhang, High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon 107, 844–851 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Cherusseri, K.K. Kar, Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A 4, 9910–9922 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Guo, Y. Ma, H. Li, T. Zhai, Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 12, 1024–1033 (2016)CrossRefGoogle Scholar
  17. 17.
    D. Yuan, B. Li, J. Cheng, Q. Guan, Z. Wang, W. Ni, C. Li, H. Liu, B. Wang, Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation. J. Mater. Chem. A 4, 11616–11624 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Wang, Y.W. Sui, S.F. Huang, Y.G. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, Binary metal oxide: advanced energy storage materials in supercapacitors. J. Mater. Chem. A 3, 43–59 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Liu, F.X. Wei, Y.W. Sui, J.Q. Qi, Y.Z. He, Q.K. Meng, Polyhedral ternary oxide FeCo2O4: a new electrode material for supercapacitors. J. Alloys Compd. 735, 1339–1343 (2018)CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, Q. Wang, C. Zhao, S. Min, X. Qian, One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 4861–4868 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Yu, L. Zhang, H.B. Wu, X.W. Lou, Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem. Int. Ed. 53, 3711–3714 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Sahoo, R. Mondal, D.J. Late, C.S. Rout, Electrodeposited nickel cobalt manganese based mixed sulfide nanosheets for high performance supercapacitor application. Microporous Mesoporous Mater. 244, 101–108 (2017)CrossRefGoogle Scholar
  25. 25.
    J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.J. Ren, Y.X. Jin, Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor, Adv. Mater. Interfaces 5, 1700985 (2018)CrossRefGoogle Scholar
  26. 26.
    L. Hou, Y. Shi, S. Zhu, M. Rehan, G. Pang, X. Zhang, C. Yuan, Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A 5, 133–144 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Yang, Y. Zhang, C. Sun, G. Guo, W. Sun, W. Huang, Q. Yan, X. Dong, Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. J. Mater. Chem. A 3, 11462–11470 (2015)CrossRefGoogle Scholar
  28. 28.
    S.E. Moosavifard, S. Fani, M. Rahmanian, Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem. Commun. (Cambridge) 52, 4517–4520 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Tang, Y. Ge, J. Shen, M. Ye, Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chem. Commun. (Cambridge) 52, 1509–1512 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, S. Ouyang, Q. Yu, P. Li, J. Ye, Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode. Chem. Commun. 51, 14057–14059 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Xu, P. Gao, T.S. Zhao, Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ. Sci. 5, 5333–5339 (2012)CrossRefGoogle Scholar
  32. 32.
    H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5, 8879–8883 (2013)CrossRefGoogle Scholar
  33. 33.
    J. Xu, T. Liu, X. Han, S. Wang, D. Liu, C. Wang, Construction of a porous three dimensional rare earth metal-sulfur-ligand open framework. Chem. Commun. 51, 15819–15822 (2015)CrossRefGoogle Scholar
  34. 34.
    L.Y. Jiang, Y.W. Sui, J.Q. Qi, Y. Chang, Y.Z. He, Q.K. Meng, F.X. Wei, Z. Sun, Y.X. Jin, Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Appl. Surf. Sci. 426, 148–159 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Xu, J.M. Lin, J.H. Wu, M.L. Huang, L.Q. Fan, H.W. Chen, X. He, Y.T. Wang, Z.D. Xu, Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors. Appl. Surf. Sci. 434, 861–870 (2018)CrossRefGoogle Scholar
  36. 36.
    H.H. Xu, X.L. Hu, Y.M. Sun, H.L. Yang, X.X. Liu, Y.H. Huang, Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8, 1148–1158 (2015)CrossRefGoogle Scholar
  37. 37.
    G.H. Li, R.C. Li, W.J. Zhou, A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano-Micro Lett. 9, 46 (2017)CrossRefGoogle Scholar
  38. 38.
    Q. Kang, J. Zhao, X. Li, G.Y. Zhu, X.M. Feng, Y.W. Ma, W. Huang, J. Liu, A single wire as all-inclusive fully functional supercapacitor. Nano Energy 32, 201–208 (2017)CrossRefGoogle Scholar
  39. 39.
    D.Y. Pan, H. Huang, X.Y. Wang, L. Wang, H.B. Liao, Z. Li, M.H. Wu, C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2, 11454–11464 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jiqiu Qi
    • 1
    • 2
    • 3
  • Xiaofeng Liu
    • 1
  • Yanwei Sui
    • 1
    • 2
    • 3
  • Yezeng He
    • 1
  • Yaojian Ren
    • 1
    Email author
  • Qingkun Meng
    • 1
  • Fuxiang Wei
    • 1
    • 2
    • 3
  • Xuping Zhang
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  3. 3.Xuzhou City Key Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations