Al doped ZnO thin film deposition by thermionic vacuum arc

  • Mustafa Özgür
  • Suat PatEmail author
  • Reza Mohammadigharehbagh
  • Caner Musaoğlu
  • Uğur Demirkol
  • Saliha Elmas
  • Soner Özen
  • Şadan Korkmaz


ZnO thin films are widely used in many application areas due to its various properties. The properties of the ZnO thin film strongly depend on the manufacturing method, doping elements and ratio and substrate material. In this paper, ZnO material was doped by Al element. Thermionic vacuum arc is a fast deposition technology for Al doped ZnO thin film manufacturing. TVA is physical vapor deposition technology, using anodic vacuum arc. It works under the high vacuum condition. The thin films were deposited onto amorphous glass, semi-crystal PET and single crystal Si substrate. Structural, morphological and optical properties of the Al doped ZnO thin films are presented. Thin films are in polycrystalline form and have high crystalline quality. According to the XRD analysis, metal oxide phases (ZnO and Al2O3) and bi-metal oxide (ZnAl2O4) phases were detected. It was found that crystallite sizes strongly depend on the substrate. The crystallite size of the thin film deposited on the Si substrate is approximately 100 nm. For the other sample, the value is very small; it is just about 20 nm. Considering the optical results of the samples, all films are transparent in visible region. Band gap and electronic structures of the Al doped ZnO thin films were investigated by optical method, photoluminescence and Raman spectra. The band gaps of the thin films were shifted towards to the high-energy region. Any impurity in deposited thin films cannot detect by the analyses devices.


  1. 1.
    V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)CrossRefGoogle Scholar
  2. 2.
    D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. 80(1–3), 383–387 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Mitra, R.K. Thareja, V. Ganesan, A. Gupta, P.K. Sahoo, V.N. Kulkarni, Synthesis and characterization of ZnO thin films for UV laser. Appl. Surf. Sci. 174(3–4), 232–239 (2001)CrossRefGoogle Scholar
  4. 4.
    R. Pietruszka, B.S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, M. Godlewski, New efficient solar cell structures based on zinc oxide nanorods. Sol. Energy Mater. Sol. Cells 143, 99–104 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14(2), 158–160 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, M. Kawasaki, Blue light-emitting diode based on ZnO. Jpn. J. Appl. Phys. 44(5L), L643 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, Low temperature conductivity of ZnO films prepared by chemical vapor deposition. J. Appl. Phys. 72, 4203 (1992)CrossRefGoogle Scholar
  8. 8.
    V. Craciun, J. Elders, J.G.E. Gardeniers, I.W. Boyd, Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl. Phys. Lett. 65, 2963 (1994)CrossRefGoogle Scholar
  9. 9.
    B. Cao, W. Cai, Y. Li, F. Sun, L. Zhang, Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bath deposition method. Nanotechnology 16, 1734 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Hwangbo, Y.-J. Lee, K.-S. Hwang, Photoluminescence of ZnO layer on commercial glass substrate prepared by sol-gel process. Ceram. Int. 34, 1237 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Pat, R. Mohammadigharehbagh, C. Musaoglu, S. Özen, Ş Korkmaz, Investigation of the surface, morphological and optical properties of boron-doped ZnO thin films deposited by thermionic vacuum arc technique. Mater. Res. Express 5(6), 066419 (2018)CrossRefGoogle Scholar
  12. 12.
    V. Şenay, S. Özen, S. Pat, S. Korkmaz, Some physical properties of a Si-doped nano-crystalline GaAs thin film grown by thermionic vacuum arc, Vaccuum. 119, 228–232 (2015)Google Scholar
  13. 13.
    Ş. Pat, S. Korkmaz, S. Özen, V. Şenay, Optical, surface and magnetic properties of the Ti-doped GaN nanosheets on glass and PET substrates by thermionic vacuum arc (TVA) method, Part. Sci. Technol. (2018) Google Scholar
  14. 14.
    R. Vladoiu, C. Porosnicu, A. Mandes, I. Jepu, V. Dinca, A. Marcu, M. Lungu, G. Prodan, L. Avotina, in Diamond and Carbon Composites and Nanocomposites, ed. by M. Aliofkhazraei, DLC thin films and carbon nanocomposite growth by thermionic vacuum arc (TVA) technology,(InTech, Rijeka, 2016)Google Scholar
  15. 15.
    R. Ghomri, M.N. Shaikh, M.I. Ahmed, W. Song, W. Cai, M. Bououdina, M. Ghers Pure and (Er, Al) co-doped ZnO nanoparticles: synthesis, characterization, magnetic and photocatalytic properties, J. Mater. Sci. (2018)Google Scholar
  16. 16.
    P.F.H. Inbaraj, J.J. Prince, Optical and structural properties of Mg doped ZnO thin films by chemical bath deposition method, J. Mater. Sci. 29(2), 935–943 (2018)Google Scholar
  17. 17.
    H. Belaid, M. Nouiri, Z.B. Ayadi, K. Djessas, L. El Mir, Fabrication and electrical properties of Si/PS/ZnO: in solar cell deposited by rf-magnetron sputtering based on nanopowder target material J. Mater. Sci. 26(11), 8272–8276 (2015)Google Scholar
  18. 18.
    U. Demirkol, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, S. Elmas, S. Özen, Ş. Korkmaz, Investigation of the substrate effect for Zr doped ZnO thin film deposition by thermionic vacuum arc technique, J. Mater. Sci. 29(21), 18098–18104 (2018)Google Scholar
  19. 19.
    G. Musa, H. Ehrich, M. Mausbach, Studies on thermionic cathode anodic vacuum arcs. J. Vacuum Sci. Technol. 12(5), 2887–2895 (1994)CrossRefGoogle Scholar
  20. 20.
    D. Levy, A. Pavese, A. Sani, V. Pischedda, Structure and compressibility of synthetic ZnAl 2 O 4 (gahnite) under high-pressure conditions, from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 28(9), 612–618 (2001)CrossRefGoogle Scholar
  21. 21.
    S. Battiston, C. Rigo, E.D.C. Severo, M.A. Mazutti, R.C. Kuhn, A. Gündel, E.L. Foletto, Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Mater. Res. 17(3), 734–738 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Smrcok, M. Halvarsson, V. Langer, S. Ruppi, A new rietveld refinement of kappa-(Al2 O3). Zeitschrift fuer Kristallographie 216, 409–412 (2001)Google Scholar
  23. 23.
    J. Kim-Zajonz, High pressure single crystal X-ray diffraction study on ruby. Z. Kristallogr. 214, 331–336 (1999)Google Scholar
  24. 24.
    K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci. 39(1), 1–24 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Kihara, G. Donnay, Anharmonic thermal vibrations in ZnO. Can. Mineral. 23(4), 647–654 (1985)Google Scholar
  26. 26.
    H. Ahsbahs, H. Sowa, High pressure X ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. J. Appl. Crystallogr. 39(2), 169–175 (2006)CrossRefGoogle Scholar
  27. 27.
    J.L. Hazemann, J.F. Berar, A. Manceau, Rietveld studies of the aluminium-iron substitution in synthetic goethite in Mater. Sci. Forum, 79, pp. 821–826 (1991)CrossRefGoogle Scholar
  28. 28.
    P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch (Springer, Berlin, 1912) (pp. 387–409)CrossRefGoogle Scholar
  29. 29.
    A. Patterson, The Scherrer formula for x-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)CrossRefGoogle Scholar
  30. 30.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull. 3(1), 37–46 (1968)CrossRefGoogle Scholar
  31. 31.
    M.S. Jang, M.K. Ryu, M.H. Yoon, S.H. Lee, H.K. Kim, A. Onodera, S. Kojima, A study on the Raman spectra of Al-doped and Ga-doped ZnO ceramics. Curr. Appl. Phys. 9(3), 651–657 (2009)CrossRefGoogle Scholar
  32. 32.
    M.F. Cerqueira, T. Viseu, J. Ayres de Campos, A.G. Rolo, T. de Lacerda-Aroso, F. Oliveira, I. Bogdanovic-Radovic, E. Alves, M.I. Vasilevskiy, Raman study of insulating and conductive ZnO:(Al, Mn) thin films. phys. status solidi (A) 212(10), 2345–2354 (2015)CrossRefGoogle Scholar
  33. 33.
    P. Fang, M. He, Y.L. Xie, M.F. Luo, XRD and raman spectroscopic comparative study on phase transformation of gamma-Al2O3 at high temperature, Guang pu xue yu guang pu fen xi, 26(11), 2039–2042 (2006)Google Scholar
  34. 34.
    N. Tong, C.J. Zhu, L.X. Song, C.H. Zhang, G.Q. Zhang, Y.X. Zhang, Characteristics of raman spectra of polyethylene terephthalate, Guang pu xue yu guang pu fen xi, 36(1), 114–118 (2016)Google Scholar
  35. 35.
    X.S. Zhao, Y.R. Ge, J. Schroeder, P.D. Persans, Carrier-induced strain effect in Si and GaAs nanocrystals. Appl. Phys. Lett. 65(16), 2033–2035 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsEskişehir Osmangazi UniversityEskisehirTurkey
  2. 2.Department of Nanoscience and NanotechnologyEskişehir Osmangazi UniversityEskisehirTurkey
  3. 3.Department of Occupational Health and SafetyBozok UniversityYozgatTurkey

Personalised recommendations