Facile synthesis and ammonia gas sensing properties of NiO nanoparticles decorated MoS2 nanosheets heterostructure

  • Dongzhi ZhangEmail author
  • Yingbo Jin
  • Yuhua Cao


In this paper, a nickel oxide (NiO)/molybdenum disulfide (MoS2) heterostructure was successfully synthesized by an economical hydrothermal method, and was spin-coated on a substrate with interdigitated electrode as a sensing material to construct ammonia (NH3) sensor. The surface morphology and microstructure of the NiO/MoS2 nanocomposite were inspected by various characterization means. The gas-sensing investigations demonstrated that the proposed NiO/MoS2 film sensor has outstanding sensing abilities toward ammonia gas in terms of high response, good reversibility, acceptable selectivity and swift response/recovery properties. The unique morphology and the synergistic effect of the NiO/MoS2 heterojunction contributed a lot to its enhanced gas sensing properties. The NiO/MoS2 heterostructure film sensor has promising applications for NH3 detection at room temperature.



This work was supported by the National Natural Science Foundation of China (Grant No. 51777215), the Key Research & Development Plan Project of Shandong Province (Grant No. 2018GSF117002), the Fundamental Research Funds for the Central Universities of China (Grant No. 18CX07010A), and the Open Funds of National Engineering Laboratory for Mobile Source Emission Control Technology (Grant No. NELMS2017B03), and the Open Fund of Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, State Oceanic Administration of China (Grant No. 201801).


  1. 1.
    H.W. Zan, W.W. Tsai, Y.R. Lo, Y.M. Wu, Y.S. Yang, Pentacene-based organic thin film transistors for ammonia sensing. IEEE Sens. J. 12, 594–601 (2012)CrossRefGoogle Scholar
  2. 2.
    S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, V.B. Patil, Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite. IEEE Sens. J. 11, 3417–3423 (2011)CrossRefGoogle Scholar
  3. 3.
    P.C. Chou, H.I. Chen, I.P. Liu, C.W. Hung, C.C. Chen, J.K. Liou, W.C. Liu, Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor. Sens. Actuators B: Chem. 203, 258–262 (2014)CrossRefGoogle Scholar
  4. 4.
    R.K. Gangopadhyay, S.K. Das, Ammonia leakage from refrigeration plant and the management practice. Process Saf. Prog. 27, 15–20 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Pandeeswari, B.G. Jeyaprakash, High sensing response of Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature. Sens. Actuators B: Chem. 195, 206–214 (2014)CrossRefGoogle Scholar
  6. 6.
    Q. Qi, T. Zhang, L. Liu, X. Zheng, G. Lu, Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sens. Actuators B: Chem. 141, 174–178 (2009)CrossRefGoogle Scholar
  7. 7.
    P. Guo, H. Pan, Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens. Actuators B: Chem. 114, 762–767 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Zolghadr, K. Khojier, S. Kimiagar, Ammonia sensing properties of alph-Fe2O3 thin films during post-annealing process. Proc. Mater. Sci. 11, 469–473 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Dien, D. Tho, V. Hien, D. Vuong, N. Chien, ZnO nanoplates surfaced-decorated by WO3 nanorods for NH3 gas sensing application. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 1–6 (2016)Google Scholar
  10. 10.
    X. Liang, T. Zhong, H. Guan, F. Liu, G. Lu, B. Quan, Ammonia sensor based on NASICON and Cr2O3 electrode. Sens. Actuators B: Chem. 136, 479–483 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Zhou, J.W. Zhang, A.U. Rehman, K. Kan, L. Li, K.Y. Shi, Synthesis, characterization, and ammonia gas sensing properties of Co3O4@CuO nanochains. J. Mater. Sci. 52, 3757–3770 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Meng, L. Dai, J. Zhu, Y. Li, W. Meng, H. Zhou, A novel mixed potential NH3 sensor based on TiO2@WO3 core-shell composite sensing electrode. Electrochim. Acta 193, 302–310 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Yamini, B. Renganathan, A.R. Ganesan, T. Prakash, Clad modified optical fiber gas sensors based on nanocrystalline nickel oxide embedded coatings. Opt. Fiber Technol. 36, 139–143 (2017)CrossRefGoogle Scholar
  14. 14.
    D.S. Dalavi, N.S. Harale, I.S. Mulla, V.K. Rao, V.B. Patil, I.Y. Kim, J.H. Kim, P.S. Patil, Nanoporous network of nickel oxide for ammonia gas detection. Mater. Lett 146, 103–107 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Wang, F. Yang, X. Wei, Y. Zhang, L. Wei, J. Zhang, Q. Tang, B. Guo, L. Xu, Controlled growth of conical nickel oxide nanocrystals and their high perfrmance gas sensing devices for ammonia molecule detection. Phys. Chem. Chem. Phys. 16, 16711–16718 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Wang, P. Yang, X. Wei, High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl. Mater. Interfaces 7, 3816–3824 (2015)CrossRefGoogle Scholar
  17. 17.
    A.M. Soleimanpour, A.H. Jayatissa, G. Sumanasekera, Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 276, 291–297 (2013)CrossRefGoogle Scholar
  18. 18.
    P.C. Chou, H. Chen, I. Liu, C. Chen, J.K. Liou, K. Hsu, W. Liu, On the ammonia gas sensing performance of a RF sputtered NiO tin-film sensor. IEEE Sens. J. 15, 3711–3715 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Kumar, A. Sanger, A. Kumar, R. Chandra, Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636–77643 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Chen, C. Hsiao, W. Chen, C.H. Chang, T. Chou, I. Liu, W. Liu, Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens. Actuators B: Chem. 256, 962–967 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Wang, X. Wei, P. Wangyang, Gas-sensing devices based on Zn-doped NiO two-dimensional grainy films with fast response and recovery for ammonia molecule detection. Nanoscale Res. Lett. 10, 461–461 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Zhang, C. Jiang, P. Li, Y. Sun, Layer-by-layer self-assembly of Co3O4 nanorod-decorated MoS2 nanosheet-based nanocomposite toward high-performance ammonia detection. ACS Appl. Mater. Interfaces 9, 6462–6471 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Sharma, A. Kumar, N. Singh, D. Kaur, Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms. Sens. Actuators B: Chem. 275, 499–507 (2018)CrossRefGoogle Scholar
  24. 24.
    D. Zhang, Y. Sun, P. Li, Y. Zhang, Facile fabrication of MoS2—modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interfaces 8, 14142–14149 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Compd. 662, 118–125 (2016)CrossRefGoogle Scholar
  26. 26.
    P.X. Zhao, Y. Tang, J. Mao, Y.X. Chen, H. Song, J.W. Wang, Y. Song, Y.Q. Liang, X.M. Zhang, One-dimensional MoS2-decorated TiO2 nanotube gas sensors for efficient alcohol sensing. J. Alloys Compd. 674, 252–258 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang, Q. Wang, A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 42, 9327–9331 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.J. Liu, L.Z. Hao, W. Gao, Q.Z. Xue, W.Y. Guo, Z.P. Wu, Y.L. Lin, H.Z. Zeng, J. Zhu, W.L. Zhang, Electrical characterization and ammonia sensing properties of MoS2/Si p–n junction. J. Alloys Compd. 631, 105–110 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Xiong, Z.Y. Zhu, T.C. Guo, H. Li, Q.Z. Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application. J. Hazard. Mater. 353, 290–299 (2018)CrossRefGoogle Scholar
  30. 30.
    D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017)CrossRefGoogle Scholar
  31. 31.
    D. Zhang, J. Liu, C. Jiang, A. Liu, B. Xia, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B: Chem. 240, 55–65 (2017)CrossRefGoogle Scholar
  32. 32.
    B. Liu, H. Yang, H. Zhao, L. An, L. Zhang, R. Shi, Y. Chen, Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sens. Actuators B: Chem. 156, 251–262 (2011)CrossRefGoogle Scholar
  33. 33.
    H.T. Rahal, R. Awad, A.M. Abdel-Gaber, D. El-Said Bakeer, Synthesis, characterization and magnetic properties of pure and EDTA-capped NiO nano-sized particles. J. Nanomater. 2017, 7460323 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Niu, R. Wang, W. Jiao, G. Ding, L. Hao, F. Yang, X. He, MoS2, graphene fiber based gas sensing devices. Carbon 95, 34–41 (2015)CrossRefGoogle Scholar
  35. 35.
    S.M. Cui, Z.H. Wen, X.K. Huang, J.B. Chang, J.H. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305–2313 (2015)CrossRefGoogle Scholar
  36. 36.
    D. Zhang, X. Fan, A. Yang, X. Zong, Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. J. Colloid Interface Sci. 523, 217–225 (2018)CrossRefGoogle Scholar
  37. 37.
    S.M. Majhi, G.K. Naik, H.J. Lee, H.G. Song, C.R. Lee, I.H. Lee, Y.T. Yu, Au@nio core-shell nanoparticles as a p-type gas sensor: novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens. Actuators B: Chem. 268, 223–231 (2018)CrossRefGoogle Scholar
  38. 38.
    Z.Q. Hua, Y. Li, Y. Zeng, Y. Wu, A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors Ι: Schottky barrier control. Sens. Actuators B: Chem. 255, 1911–1919 (2018)CrossRefGoogle Scholar
  39. 39.
    U.V. Patil, N.S. Ramgir, N. Karmakar, A. Bhogale, A.K. Debnath, D.K. Aswal, S.K. Gupta, D.C. Kothari, Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 339, 69–74 (2015)CrossRefGoogle Scholar
  40. 40.
    D.K. Bandgar, S.T. Navale, S.R. Nalage, R.S. Mane, F.J. Stadler, D.K. Aswal, S.K. Gupta, V.B. Patil, Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. J. Mater. Chem. C 3, 9461–9468 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Sun, X. Shu, Y. Tian, Z. Tong, S. Bai, R. Luo, D. Li, C.C. Liu, Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B: Chem. 241, 658–664 (2017)CrossRefGoogle Scholar
  42. 42.
    I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, V. Rehacek, Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification. Sens. Actuators B: Chem. 103, 300–311 (2004)CrossRefGoogle Scholar
  43. 43.
    R. Miao, W. Zeng, Q. Gao, SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gas-sensing properties. Appl. Surf. Sci. 384, 304–310 (2016)CrossRefGoogle Scholar
  44. 44.
    J. Li, X. Qian, Y. Peng, J. Lin, Hierarchical structure NiO/CdS for highly performance H2 evolution. Mater. Lett. 224, 82–85 (2018)CrossRefGoogle Scholar
  45. 45.
    H.M. Hu, M. Wang, C.H. Deng, J.l. Chen, A.G. Wang, H.R. Le, Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater. Lett. 224, 75–77 (2018)CrossRefGoogle Scholar
  46. 46.
    S.F. Zhao, G.J. Wang, J.C. Liao, S.S. Lv, Z.N. Zhu, Z.C. Li, Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities. Appl. Surf. Sci. 456, 808–816 (2018)CrossRefGoogle Scholar
  47. 47.
    Y. Zhao, J. Yan, Y.P. Huang, J.B. Lian, J.X. Qiu, J. Bao, M. Cheng, H. Xu, H.M. Li, K.L. Chen, Interfacial self-assembly of monolayer Mg-doped NiO honeycomb structured thin flm with enhanced performance for gas sensing. J. Mater. Sci. Mater. Electron. 29, 11498–11508 (2018)CrossRefGoogle Scholar
  48. 48.
    S.Y. Tsai, M.H. Hon, Y.M. Lu, Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors. Solid-State Electron. 63, 37–41 (2011)CrossRefGoogle Scholar
  49. 49.
    X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng et al., A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties. J. Alloys Compd. 739, 260–269 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, College of Information and Control EngineeringChina University of Petroleum (East China)QingdaoChina

Personalised recommendations