Comparative study of effective photoabsorber CuO thin films prepared via different precursors using chemical spray pyrolysis for solar cell application

  • D. Naveena
  • T. Logu
  • R. Dhanabal
  • K. Sethuraman
  • A. Chandra BoseEmail author


Copper oxide (CuO) thin film is a promising material used as a photo-absorber layer in solar cell application due to its narrow bandgap, low cost and high abundance. In this work, the CuO thin films have been prepared using various source materials such as Cu(NO3)2·3H2O, CuCl2·2H2O and Cu(CH3COO)2·H2O by chemical spray pyrolysis technique. The XRD result shows an increased crystallite size for Cu–N compared with Cu–Cl and Cu–A films. Good optical absorption in the visible region is observed for all CuO films and Cu–N film illustrates high absorption coefficient in the order of 5.7 × 105 cm−1. From SEM analysis, flake like morphology is observed for Cu–N and Cu–A films. The good electrical property i.e. high conductivity (0.0611 S cm−1) and carrier concentration (2.287 × 1017 cm−3) is observed for Cu–N films. All CuO films exhibit a single semicircle impedance nature and smaller diameter of semicircle corresponding to Cu–N film indicates low electrical resistivity present in the sample. From I–V measurement, it is observed that the high current for Cu–N (16.6 µA) than Cu–Cl (2.3 µA) and Cu–A (10.7 µA). All CuO films are photo-responsive under solar light exposure, which is due to high absorption coefficient that leads to higher photocurrent (20.5 µA) for Cu–N film. The best solar cell performance is obtained for Cu–N film which shows an efficiency of 0.31%. From the above results, we conclude that Cu–N is an optimum precursor for fabricating CuO based thin film solar cell.



The authors are thankful to The Director, National Institute of Technology, Tiruchirappalli, Tamil Nadu for providing Instrument facilities.


  1. 1.
    X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)CrossRefGoogle Scholar
  2. 2.
    C.T. Chen, F.C. Hsu, Y.M. Sung, H.C. Liao, W.C. Yen, W.F. Su, Y.F. Chen, Effects of metal-free conjugated oligomer as a surface modifier in hybrid polymer/ZnO solar cells. Sol. Energy Mater. Sol. Cells 107, 69–74 (2012)CrossRefGoogle Scholar
  3. 3.
    M.E. Mazhar, G. Faglia, E. Comini, D. Zappa, C. Baratto, G. Sberveglieri, Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sens. Actuators B 222, 1257–1263 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Shingai, Y. Ide, W.Y. Sohn, K. Katayama, Photoexcited charge carrier dynamics of interconnected TiO2 nanoparticles: evidence of enhancement of charge separation at anatase-rutile particle interfaces. Phys. Chem. Chem. Phys. 20, 3484–3489 (2018)CrossRefGoogle Scholar
  5. 5.
    D.H. Kim, J.H. Park, T.I. Lee, J.M. Myoung, Superhydrophobic Al-doped ZnO nanorods-based electrically conductive and self-cleanable antireflecting window layer for thin film solar cell. Sol. Energy Mater. Sol. Cells 150, 65–70 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Bhaumik, A. Haque, P. Karnati, M.F.N. Taufique, R. Patel, K. Ghosh, Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 572, 126–133 (2014)CrossRefGoogle Scholar
  7. 7.
    D.S. Ginley, C. Bright, Transparent conducting oxides. MRS Bull. 25, 15–18 (2000)CrossRefGoogle Scholar
  8. 8.
    W. Yu, L. Shen, S. Ruan, F. Meng, J. Wang, E. Zhang, W. Chen, Performance improvement of inverted polymer solar cells thermally evaporating nickel oxide as an anode buffer layer. Sol. Energy Mater. Sol. Cells 98, 212–215 (2012)CrossRefGoogle Scholar
  9. 9.
    A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O’Mullane, K. Kalantar-Zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2, 5247–5270 (2014)CrossRefGoogle Scholar
  10. 10.
    S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young, B.R. Huang, A CuO nanowire infrared photodetector. Sens. Actuators A 171, 207–211 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Muthukrishnan, V. Subramaniam, T. Mahalingam, S.J. Helen, P. Sumathi, Improved properties of spray pyrolysed CuO nanocrystalline thin films. J. Mater. Sci. Mater. Electron. 28, 4211–4218 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Mahmood, F. Tezcan, G. Kardaş, Photoelectrochemical characteristics of CuO films with different electrodeposition time. Int. J. Hydrog. Energy 42, 23268–23275 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Markworth, X. Liu, J. Dai, W. Fan, T. Marks, R. Chang, Coherent island formation of Cu2O films grown by chemical vapor deposition on MgO (110). J. Mater. Res. 16, 2408–2414 (2001)CrossRefGoogle Scholar
  14. 14.
    K. Mageshwari, R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process. 16, 337–343 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Korkmaz, B. Geçici, S.D. Korkmaz, R. Mohammadigharehbagh, S. Pat, S. Özen, V. Şenay, H.H. Yudar, Morphology, composition, structure and optical properties of CuO/Cu2O thin films prepared by RF sputtering method. Vacuum 131, 142–146 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Morales, L. Sanchez, F. Martin, J. Ramos-Barrado, M. Sanchez, Use of low temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474, 133–140 (2005)CrossRefGoogle Scholar
  17. 17.
    Y.F. Lim, C.S. Chua, C.J.J. Lee, D. Chi, Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16, 25928–25934 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Logu, K. Sankarasubramanian, P. Soundarrajan, K. Ramamurthi, K. Sethuraman, Materials design of n-type CuInS2 thin films with reduction of Cu–Au. Phase using Cd2+ ions. J. Anal. Appl. Pyrol. 114, 293–301 (2015)CrossRefGoogle Scholar
  19. 19.
    V. Gupta, A. Mansingh, Influence of post deposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063–1073 (1996)CrossRefGoogle Scholar
  20. 20.
    J.G. Quiñones-Galván, I.M. Sandoval-Jiménez, H. Tototzintle-Huitle, L.A. Hernández-Hernández, F. de Moure-Flores, A. Hernández-Hernández, E. Campos-González, A. Guillén-Cervantes, O. Zelaya-Angel, J.J. Araiza-Ibarra, Effect of precursor solution and annealing temperature on the physical properties of sol–gel-deposited ZnO thin films. Results Phys. 3, 248–253 (2013)CrossRefGoogle Scholar
  21. 21.
    G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34–46 (1956)CrossRefGoogle Scholar
  22. 22.
    K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, Development of nanocoral-like Cd (SSe) thin films using an arrested precipitation technique and their application. ‎New J. Chem. 38, 5964–5974 (2014)CrossRefGoogle Scholar
  23. 23.
    F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 147, 987–995 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Caglar, Sol-gel derived nanostructure undoped and cobalt doped ZnO: structural, optical and electrical studies. J. Alloys Compd. 560, 181–188 (2013)CrossRefGoogle Scholar
  25. 25.
    R.D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. Alfaify, A. Kathalingam, S.R. Srikumar, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique. Mater. Sci. Semicond. Process. 74, 129–135 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Bhaumik, A.M. Shearin, R. Patel, K. Ghosh, Significant enhancement of optical absorption through nano-structuring of copper based oxide semiconductors: possible future materials for solar energy applications. Phys. Chem. Chem. Phys. 16, 11054–11066 (2014)CrossRefGoogle Scholar
  27. 27.
    K.P. Ganesan, N. Anandhan, V. Dharuman, P. Sami, R. Pannerselvam, T. Marimuthu, Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films. Results Phys. 7, 82–86 (2017)CrossRefGoogle Scholar
  28. 28.
    V. Saravanan, P. Shankar, G.K. Mani, J.B.B. Rayappan, Growth and characterization of spray pyrolysis deposited copper oxide thin films: influence of substrate and annealing temperatures. J. Anal. Appl. Pyrol. 111, 272–277 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya,. W. Assmann, Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vacuum 57, 377–385 (2000)CrossRefGoogle Scholar
  30. 30.
    M. Zhao, Y. Jiang, J. Lv, Y. Sun, L. Cao, G. He, M. Zhang, Z. Sun, Microstructure, morphology and sunlight response of cuprous oxide thin films. J. Mater. Sci. Mater. Electron. 27, 1799–1804 (2016)CrossRefGoogle Scholar
  31. 31.
    Y.C. Chang, J.Y. Guo, C.M. Chen, H.W. Di, C.C. Hsu, Construction of CuO/In2S3/ZnO heterostructure arrays for enhanced photocatalytic efficiency. Nanoscale 9, 13235–13244 (2017)CrossRefGoogle Scholar
  32. 32.
    X. Zhao, P. Wang, Z. Yan, N. Ren, Room temperature photoluminescence properties of CuO nanowire arrays. Opt. Mater. 42, 544–547 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005)CrossRefGoogle Scholar
  34. 34.
    A.V. Nikam, A. Arulkashmir, K. Krishnamoorthy, A.A. Kulkarni, B.L.V. Prasad, pH-dependent single-step rapid synthesis of CuO and Cu2O nanoparticles from the same precursor. Cryst. Growth Des. 14, 4329–4334 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Karle, D. Rogalla, A. Ludwig, H.W. Becker, A.D. Wieck, M. Grafen, A. Ostendorf, A. Devi, Synthesis and evaluation of new copper ketoiminate precursors for a facile and additive-free solution-based approach to nanoscale copper oxide thin films. Dalton Trans. 46, 2670–2679 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Tombak, M. Benhaliliba, Y.S. Ocak, T. Kiliçoglu, The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results Phys. 5, 314–321 (2015)CrossRefGoogle Scholar
  37. 37.
    R.D. Prabu, S. Valanarasu, I. Kulandaisamy, V. Ganesh, M. Shkir, A. Kathalingam, Studies on copper oxide thin films prepared by simple nebulizer spray technique. J. Mater. Sci. Mater. Electron. 28, 6754–6762 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Chithambararaj, N. Rajeswari Yogamalar, A. Chandra Bose, Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: new findings on crystal-structure-dependent charge transport. Cryst. Growth Des. 16, 1984–1995 (2016)CrossRefGoogle Scholar
  39. 39.
    R. Dhanabal, A. Chithambararaj, S. Velmathi, A. Chandra Bose, Visible light driven degradation of methylene blue dye using Ag3PO4. J. Environ. Chem. Eng. 3, 1872–1881 (2015)CrossRefGoogle Scholar
  40. 40.
    L. Singh, I.W. Kim, B.C. Sin, A. Ullah, S.K. Woo, Y. Lee, Study of dielectric, AC-impedance, modulus properties of 0.5Bi0.5Na0.5TiO30.5CaCu3Ti4O12 nano-composite synthesized by a modified solid state method. Mater. Sci. Semicond. Process. 31, 386–396 (2015)CrossRefGoogle Scholar
  41. 41.
    T. Logu, R. Raliya, S. Kavadiya, S. Palanivel, K. Sethuraman, P. Biswas, Hierarchical architecture of CuInS2 microsphere thin films: altering laterally aligned crystallographic plane growth by Cd and V doping. CrystEngComm 19, 6602–6611 (2017)CrossRefGoogle Scholar
  42. 42.
    N.V. Joshi, Photoconductivity: Art: Science & Technology, (Marcel Dekker, New York, 1990)Google Scholar
  43. 43.
    H. Kidowaki, T. Oku, T. Akiyama, Fabrication and characterization of CuO/ZnO solar cells. J. Phys. Conf. Ser. 352, 012022 (2012)CrossRefGoogle Scholar
  44. 44.
    P. Wang, X. Zhao, B. Li, ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications. ‎Opt. Express 19, 11271–11279 (2011)CrossRefGoogle Scholar
  45. 45.
    S. Hussain, C. Cao, G. Nabi, W.S. Khan, M. Tahir, M. Tanveer, I. Aslam, Optical and electrical characterization of ZnO/CuO heterojunction solar cells. Optik 130, 372–377 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Katayama, K. Ito, M. Matsuoka, J. Tamaki, Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition. J. Appl. Electrochem. 34, 687–692 (2004)CrossRefGoogle Scholar
  47. 47.
    M.A. Hossain, M. Wang, K.L. Choy, Ecofriendly and nonvacuum electrostatic spray-assisted vapor deposition of Cu(In,Ga)(S,Se)2 thin film solar cells. ACS Appl. Mater. Interfaces 7, 22497–22503 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. Naveena
    • 1
  • T. Logu
    • 2
  • R. Dhanabal
    • 1
  • K. Sethuraman
    • 2
  • A. Chandra Bose
    • 1
    Email author
  1. 1.Nanomaterials Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia
  2. 2.School of PhysicsMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations