Enhancing ultraviolet photoresponsivity of an oversized Sn-doped ZnO microwire based photodetector

  • Xinyu Sun
  • Fahad Azad
  • Shuangpeng Wang
  • Lingzhi Zhao
  • Shichen SuEmail author


Hybrid metal oxide nano/microstructures exhibit excellent electrical and optical properties, which make them promising candidates for a wide range of applications including photodetection. In this paper, an oversized Sn-doped ZnO (SZO) microwire was synthesized by one step CVD process and ultraviolet (UV) photodetection properties of this MW was studied. The morphological, structural, optical and compositional properties of synthesized MWs were characterized using several techniques. A photodetector was fabricated by depositing interdigital Au electrodes on an oversized SZO. The study of photodetection properties revealed improved performance of SZO MWs compared to undoped ZnO MWs. For SZO MWs, an enhancement in UV photodetection responsivity (1100 A/W) was found nearly 100 times greater than that of undoped ZnO MWs (11.38 A/W). Moreover, the response wavelength was blue shifted as compared to undoped ZnO MWs. All these results indicated that SZO MWs have high potential for UV photodetection applications.



This work is supported by National Natural Science Foundation of China (Grant No. 61574063); Science and Technology Program of Guangdong Province, China (Grant Nos. 2017A050506047, 2017B030311013); Guangzhou Science and Technology Project (Grant No. 2016201604030047); Science and Technology Development Fund (FDCT 084/2016/A2) from Macau SAR; Multi-Year Research Grants (MYRG-00149-FST) from University of Macau.


  1. 1.
    B.O. Jung, Y.H. Kwon, D.J. Seo, D.S. Lee, H.K. Cho, J. Cryst. Growth 370, 314–318 (2013)CrossRefGoogle Scholar
  2. 2.
    A.G. Ardakani, M. Pazoki, S.M. Mahdavi, A.R. Bahrampour, N. Taghavinia, Appl. Surf. Sci. 258, 5405–5411 (2012)CrossRefGoogle Scholar
  3. 3.
    C.L. Hsu, K.C. Chen, T.Y. Tsai, T.J. Hsueh, Sens. Actuators B 182, 190–196 (2013)CrossRefGoogle Scholar
  4. 4.
    A.M. Ma, M. Gupta, F.R. Chowdhury, M. Shen, K. Bothe, K. Shankar, Y. Tsui, D.W. Barlage, Solid-State Electron 76, 104–108 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Gabás, P. Díaz-Carrasco, F. Agulló-Rueda, P. Herrero, A. Landa-Cánovas, J. Ramos-Barrado, Sol. Energy Mater. Sol. Cells 95, 2327–2334 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Shinde, P. Shinde, R. Sapkal, Y. Oh, D. Haranath, C. Bhosale, K. Rajpure, J. Alloys Compd. 538, 237–243 (2012)CrossRefGoogle Scholar
  7. 7.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897–1899 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, Nano Lett. 2, 87–89 (2002)CrossRefGoogle Scholar
  9. 9.
    D. Bagnall, Y. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230–2232 (1997)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, L. Zhang, G. Wang, X. Peng, Z. Chu, C. Liang, J. Cryst. Growth 234, 171–175 (2002)CrossRefGoogle Scholar
  11. 11.
    S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Cryst. Growth 247, 357–362 (2003)CrossRefGoogle Scholar
  12. 12.
    C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 92, 241102 (2008)CrossRefGoogle Scholar
  13. 13.
    M.H. Zhao, Z.L. Wang, S.X. Mao, Nano Lett. 4, 587–590 (2004)CrossRefGoogle Scholar
  14. 14.
    L. Vayssieres, Adv. Mater. 15, 464–466 (2003)CrossRefGoogle Scholar
  15. 15.
    Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, ACS Nano 10, 6285–6291 (2010)CrossRefGoogle Scholar
  16. 16.
    S.M. Hatch, J. Briscoe, S. Dunn, Adv. Mater. 25, 867–871 (2013)CrossRefGoogle Scholar
  17. 17.
    K. Liu, M. Sakurai, M. Liao, M. Aono, J. Phys. Chem. C 114, 19835–19839 (2010)CrossRefGoogle Scholar
  18. 18.
    H.J. Fan, Y. Yang, M. Zacharias, J. Mater. Chem. 19, 885–900 (2009)CrossRefGoogle Scholar
  19. 19.
    J.W. Zhao, L.R. Qin, L.D. Zhang, Solid State Commun. 141, 663–666 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 12, 013004 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Rong, X. Gao, G. Li, T. Yan, H. Zhu, J. Qu, D. Song, J. Phys. Chem. B 110, 14754–14760 (2006)CrossRefGoogle Scholar
  22. 22.
    N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu, D. He, Mater. Lett. 76, 66–68 (2012)CrossRefGoogle Scholar
  23. 23.
    Z. Tian, C. Liang, J. Liu, H. Zhang, L. Zhang, J. Mater. Chem. 33, 17210–17214 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Liu, R. Röder, L. Zhang, Z. Ren, H. Chen, Z. Zhang, C. Ronning, P.X. Gao, J. Mater. Chem. A 12, 4157–4167 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Miyauchi, Z. Liu, Z.G. Zhao, S. Anandan, K. Hara, Chem. Commun. 46, 1529–1531 (2010)CrossRefGoogle Scholar
  26. 26.
    M.A. Alpuche-Aviles, Y. Wu, J. Am. Chem. Soc. 131, 3216–3224 (2009)CrossRefGoogle Scholar
  27. 27.
    Y.Y. Choi, H.K. Kim, H.W. Koo, T.W. Kim, S.N. Lee, J. Vac. Sci. Technol. A. 29, 061502 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Zhao, L. Hu, H. Liu, M. Liao, X. Fang, L. Wu, Sci. Rep. 4, 6847 (2014)CrossRefGoogle Scholar
  29. 29.
    L. Li, L. Gu, Z. Lou, Z. Fan, G. Shen, ACS Nano 11, 4067–4076 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Liu, A. Piyadasa, M. Piech, S. Dardona, Z. Ren, P.X. Gao, J. Mater. Chem. C 25, 6176–6184 (2016)CrossRefGoogle Scholar
  31. 31.
    B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, S. Lei, J. Mater. Chem. C 10, 1808–1814 (2014)CrossRefGoogle Scholar
  32. 32.
    O. Lupan, N. Wolff, V. Postica, T. Braniste, I. Paulowicz, V. Hrkac, Y.K. Mishra, I. Tiginyanu, L. Kienle, R. Adelung, Ceram. Int. (2017). Google Scholar
  33. 33.
    Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, ACS Appl. Mater. Interfaces 26, 14303–14316 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Wang, X. Zhang, X. Liao, W. Yang, Nanotechnology 16, 2928 (2005)CrossRefGoogle Scholar
  35. 35.
    O. Fouad, G. Glaspell, M. El-Shall, Top. Catal. 47, 84–96 (2008)CrossRefGoogle Scholar
  36. 36.
    K. Jeyadheepan, C. Sanjeeviraja, J. Chem. (2014). Google Scholar
  37. 37.
    S. Senol, O. Ozturk, C. Terzioğlu, Cera. Int. 41, 11194–11201 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Malek, M. Mamat, M. Musa, T. Soga, S. Rahman, S.A. Alrokayan, H.A. Khan, M. Rusop, J. Lumin. 160, 165–175 (2015)CrossRefGoogle Scholar
  39. 39.
    R. Ghosh, D. Basak, S. Fujihara, J. Appl. Phys. 96, 2689–2692 (2004)CrossRefGoogle Scholar
  40. 40.
    V. Srikant, D. Clarke, J. Appl. Phys. 81, 6357–6364 (1997)CrossRefGoogle Scholar
  41. 41.
    E.D. Adelowo, A.Y. Fasasi, M.O. Adeoye, S.O. Alayande, Chem. Mater. Res. 3, 96–106 (2013)Google Scholar
  42. 42.
    W. Yang, K. Hu, F. Teng, J. Weng, Y. Zhang, X. Fang, Nano Lett. 18, 4697–4703 (2018)CrossRefGoogle Scholar
  43. 43.
    X. Fu, X. Wang, J. Long, Z. Ding, T. Yan, G. Zhang, Z. Zhang, H. Lin, X. Fu, J. Solid State Chem. 182, 517–524 (2009)CrossRefGoogle Scholar
  44. 44.
    L. Hu, J. Yan, M. Liao, L. Wu, X. Fang, Small 7, 1012–1017 (2011)CrossRefGoogle Scholar
  45. 45.
    Q. Jiang, C. Wu, L. Feng, L. Gong, Z. Ye, J. Lu, Appl. Surf. Sci. 357, 1536–1540 (2015)CrossRefGoogle Scholar
  46. 46.
    D.T. Martínez, R.C. Pérez, G.T. Delgado, O.Z. Ángel, J. Photochem. Photobiol. A 235, 49–55 (2012)CrossRefGoogle Scholar
  47. 47.
    T.G. Kim, D.S. Shin, J. Park, J. Nanosci. Nanotechnol. 16, 10272–10275 (2016)CrossRefGoogle Scholar
  48. 48.
    Z. Yang, M. Wang, Q. Zhao, H. Qiu, J. Li, X. Li, J. Shao, ACS Appl. Mater. Interfaces 9, 22837–22845 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xinyu Sun
    • 1
  • Fahad Azad
    • 2
  • Shuangpeng Wang
    • 3
  • Lingzhi Zhao
    • 1
  • Shichen Su
    • 1
    Email author
  1. 1.Institute of Optoelectronic Material and TechnologySouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Natural Sciences (SNS)National University of Sciences and Technology (NUST)IslamabadPakistan
  3. 3.Institute of Applied Physics and Materials EngineeringUniversity of MacauMacauPeople’s Republic of China

Personalised recommendations