Advertisement

X-ray analysis for micro-structure of AlN/GaN multiple quantum well systems

  • Oleksii I. LiubchenkoEmail author
  • Vasyl P. Kladko
  • Tomash M. Sabov
  • Oleksandr V. Dubikovskyi
Article

Abstract

The structural properties of AlN/GaN multiple quantum well (MQW) structures grown on c-plain sapphire substrate are studied by means of high-resolution X-ray diffraction (HRXRD). A new method to consider the influence of the depth variation of the dislocations density and well (barrier) thicknesses on the X-ray diffraction spectra was developed. The influence of the dislocation type on the diffraction peak broadening is based on the mosaic model of a crystal. The represented simulations of the experimental spectra are based on the dynamical theory of X-ray diffraction in agreement with the developed model. The calculations of X-ray diffraction spectra for AlN/GaN MQW considering the depth variation of dislocation density and layers thicknesses explain well the observed broadening and asymmetry of the satellites peaks of the measured spectra, especially for higher-order reflections. In addition, in this paper was demonstrated, that the commonly used Williamson–Hall plot analysis is consistent for MQW structures with the dislocations density > 1 × 108 cm−2. The developed methods allow fast and reliable determination of layers thicknesses, dislocations densities and strain profiles.

Notes

Acknowledgements

This work has been funded by the Program of Fundamental Researches of The National Academy of Sciences of Ukraine “Fundamental Problems of New Nanomaterials and Nanotechnologies”. Furthermore, the authors thank PhD Hryhorii V. Stanchu for useful discussions and critical reading of the manuscript.

References

  1. 1.
    D. Alonso-Álvarez, T. Thomas, M. Führer, N.P. Hylton, N.J. Ekins-Daukes, D. Lackner, S.P. Philipps, A.W. Bett, H. Sodabanlu, H. Fujii, K. Watanabe, M. Sugiyama, L. Nasi, M. Campanini, Appl. Phys. Lett. 105, 083124 (2014)CrossRefGoogle Scholar
  2. 2.
    H. MacHhadani, Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli, J. Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, F.H. Julien, Appl. Phys. Lett. 97, 191101 (2010)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, Z. Liu, C. He, B. Cheng, C. Xue, C. Li, Q. Wang, J. Mater. Sci. Mater. Electron. 27, 9341 (2016).  https://doi.org/10.1007/s10854-016-4974-7 CrossRefGoogle Scholar
  4. 4.
    Y. Baş, P. Demirel, N. Akın, C. Başköse, Y. Özen, B. Kınacı, M.K. Öztürk, S. Özçelik, E. Özbay, J. Mater. Sci. Mater. Electron. 25, 3924 (2014).  https://doi.org/10.1007/s10854-014-2108-7 CrossRefGoogle Scholar
  5. 5.
    X. Han, Y. Zhang, P. Li, L. Yan, G. Deng, L. Chen, Y. Yu, D. Zhao, J. Yin, J. Mater. Sci. Mater. Electron. 29, 7756 (2018).  https://doi.org/10.1007/s10854-018-8772-2 CrossRefGoogle Scholar
  6. 6.
    A. Demchuk, D. Olson, M. Shin, D. Olson, P. Nussbaum, A. Strom, S. Bates, F. Hofmann, G. Munns, MRS Proc. 743, L9.4 (2002)CrossRefGoogle Scholar
  7. 7.
    V.N. Jmerik, A.M. Mizerov, T.V. Shubina, A.A. Toropov, K.G. Belyaev, A.A. Sitnikova, M.A. Yagovkina, P.S. Kop’ev, E.V. Lutsenko, A.V. Danilchyk, N.V. Rzheutskii, G.P. Yablonskii, B. Monemar, S.V. Ivanov, Phys. Status Solidi 207, 1313 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Teke, S. Dogan, F. Yun, M. Reshchikov, H. Le, X. Liu, H. Morkoç, S. Zhang, W. Wang, R. Alfano, Solid State Electron. 47, 1401 (2003)CrossRefGoogle Scholar
  9. 9.
    T.-Y. Wang, C.-T. Tasi, C.-F. Lin, D.-S. Wuu, Sci. Rep. 7, 14422 (2017)CrossRefGoogle Scholar
  10. 10.
    H.-J. Lee, S.-Y. Bae, K. Lekhal, T. Mitsunari, A. Tamura, Y. Honda, H. Amano, J. Cryst. Growth 454, 114 (2016)CrossRefGoogle Scholar
  11. 11.
    X.-Q. Shen, T. Takahashi, T. Ide, M. Shimizu, Jpn. J. Appl. Phys. 57, 010306 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Han, E. Pan, A. Sangghaleh, J. Albrecht, Int. J. Solids Struct. 51, 2648 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Mishra, Y.E. Pak, Eur. J. Mech.—A/Solids 61, 279 (2017)CrossRefGoogle Scholar
  14. 14.
    H.-M. Wang, J.-P. Zhang, C.-Q. Chen, Q. Fareed, J.-W. Yang, M.A. Khan, Appl. Phys. Lett. 81, 604 (2002)CrossRefGoogle Scholar
  15. 15.
    N.V. Safriuk, G.V. Stanchu, A.V. Кuchuk, V.P. Кladko, A.E. Belyaev, V.F. Machulin, Semicond. Phys. Quantum Electron. Optoelectron. 16, 265 (2013)CrossRefGoogle Scholar
  16. 16.
    H.V. Stanchu, A.V. Kuchuk, M. Barchuk, Y.I. Mazur, V.P. Kladko, Z.M. Wang, D. Rafaja, G.J. Salamo, CrystEngComm 19, 2977 (2017)CrossRefGoogle Scholar
  17. 17.
    S.B. Kryvyi, P.M. Lytvyn, V.P. Kladko, H.V. Stanchu, A.V. Kuchuk, Y.I. Mazur, G.J. Salamo, S. Li, P.P. Kogutyuk, A.E. Belyaev, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 35, 062902 (2017)CrossRefGoogle Scholar
  18. 18.
    A.V. Kuchuk, P.M. Lytvyn, C. Li, H.V. Stanchu, Y.I. Mazur, M.E. Ware, M. Benamara, R. Ratajczak, V. Dorogan, V.P. Kladko, A.E. Belyaev, G.G. Salamo, ACS Appl. Mater. Interfaces 7, 23320 (2015)CrossRefGoogle Scholar
  19. 19.
    W.J. Bartels, W. Nijman, J. Cryst. Growth 44, 518 (1978)CrossRefGoogle Scholar
  20. 20.
    B.E. Warren, Prog. Met. Phys. 8, 147 (1959)CrossRefGoogle Scholar
  21. 21.
    B. Warren, X.-Ray Diffraction (Addison-Wesley Pub. Co., Boston, 1969)Google Scholar
  22. 22.
    M. Hordon, B. Averbach, Acta Metall. 9, 237 (1961)CrossRefGoogle Scholar
  23. 23.
    G. Williamson, W. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  24. 24.
    J.E. Ayers, J. Cryst. Growth 135, 71 (1994)CrossRefGoogle Scholar
  25. 25.
    M. Wilkens, Phys. Status Solidi 2, 359 (1970)CrossRefGoogle Scholar
  26. 26.
    G. Zilahi, T. Ungár, G. Tichy, J. Appl. Crystallogr. 48, 418 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Ungár, S. Ott, P. Sanders, A. Borbély, J. Weertman, Acta Mater. 46, 3693 (1998)CrossRefGoogle Scholar
  28. 28.
    P.D. Healey, K. Bao, M. Gokhale, J.E. Ayers, F.C. Jain, Acta Crystallogr. 51, 498 (1995)CrossRefGoogle Scholar
  29. 29.
    P.F. Fewster, J. Appl. Crystallogr. 22, 64 (1989)CrossRefGoogle Scholar
  30. 30.
    V.V. Ratnikov, R.N. Kyutt, T.V. Shubina, T. Paskova, B. Monemar, J. Phys. D Appl. Phys. 34, A30 (2001)CrossRefGoogle Scholar
  31. 31.
    V. Ratnikov, R. Kyutt, T. Shubina, T. Paskova, E. Valcheva, B. Monemar, J. Appl. Phys. 88, 6252 (2000)CrossRefGoogle Scholar
  32. 32.
    M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  33. 33.
    T. Ungár, Scr. Mater. 51, 777 (2004)CrossRefGoogle Scholar
  34. 34.
    S.R. Lee, A.M. West, A.A. Allerman, K.E. Waldrip, D.M. Follstaedt, P.P. Provencio, D.D. Koleske, C.R. Abernathy, Appl. Phys. Lett. 86, 241904 (2005)CrossRefGoogle Scholar
  35. 35.
    E. Schafler, M. Zehetbauer, T. Ungàr, Mater. Sci. Eng. A 319–321, 220 (2001)CrossRefGoogle Scholar
  36. 36.
    V.M. Kaganer, K.K. Sabelfeld, Phys. Rev. B 80, 184105 (2009)CrossRefGoogle Scholar
  37. 37.
    V.M. Kaganer, O. Brandt, A. Trampert, K.H. Ploog, Phys. Rev. B 72, 045423 (2005)CrossRefGoogle Scholar
  38. 38.
    J.Q. Liu, J.F. Wang, Y.F. Liu, K. Huang, X.J. Hu, Y.M. Zhang, Y. Xu, K. Xu, H. Yang, J. Cryst. Growth 311, 3080 (2009)CrossRefGoogle Scholar
  39. 39.
    M. Barchuk, V. Holý, B. Miljević, B. Krause, T. Baumbach, J. Hertkorn, F. Scholz, J. Appl. Phys. 108, 043521 (2010)CrossRefGoogle Scholar
  40. 40.
    S. Takagi, Acta Crystallogr. 15, 1311 (1962)CrossRefGoogle Scholar
  41. 41.
    S. Takagi, J. Phys. Soc. Jpn. 26, 1239 (1969)CrossRefGoogle Scholar
  42. 42.
    D. Taupin, Bull. Soc. Franc. Miner. Crystallogr. 7, 469 (1964)Google Scholar
  43. 43.
    R. Zaus, J. Appl. Crystallogr. 26, 801 (1993)CrossRefGoogle Scholar
  44. 44.
    A. Sanz-Hervás, M. Aguilar, J.L. Sánchez-Rojas, A. Sacedón, E. Calleja, E. Muñoz, C. Villar, E.J. Abril, M. López, J. Appl. Phys. 82, 3297 (1997)CrossRefGoogle Scholar
  45. 45.
    R.N. Kyutt, A.Y. Khil’ko, N.S. Sokolov, Phys. Solid State 40, 1417 (1998)CrossRefGoogle Scholar
  46. 46.
    . M.A. Krivoglaz, K.P. Ryaboshapka, Phys. Metal Metallogr. 15, 14 (1963)Google Scholar
  47. 47.
    V.M. Kaganer, K.K. Sabelfeld, Acta Crystallogr. Sect. A Found. Adv. 70, 457 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Li, Z. Mai, J. Li, C. Li, S. Cui, Acta Crystallogr. 51, 350 (1995)CrossRefGoogle Scholar
  49. 49.
    F.A. Althowibi, J.E. Ayers, J. Vac. Sci. Technol. B 35, 03D105 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Halliwell, Prog. Cryst. Growth Charact. 19, 249 (1989)CrossRefGoogle Scholar
  51. 51.
    O.I. Liubchenko, V.P. Kladko, Metallofiz. Noveishie Tekhnol. 40, 759 (2018).  https://doi.org/10.15407/mfint.40.06.0759 CrossRefGoogle Scholar
  52. 52.
    S.R. Lee, D.D. Koleske, M.H. Crawford, J.J. Wierer, J. Cryst. Growth 355, 63 (2012)CrossRefGoogle Scholar
  53. 53.
    M. Wilkens, in Fundamental Aspects of Dislocation Theory, ed. by J. Simmons, R. de Wit, R. Bullough (National Bureau of Standards (U.S.), Special Publications. 317, 1969), pp. 1195–1222Google Scholar
  54. 54.
    A.C. Vermeulen, R. Delhez, T.H. de Keijser, E.J. Mittemeijer, J. Appl. Phys. 77, 5026 (1995)CrossRefGoogle Scholar
  55. 55.
    P.F. Fewster, X-Ray Scattering from Semiconductors (Imperial College Press, London, 2003), pp. 60–64CrossRefGoogle Scholar
  56. 56.
    T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, H.P. Strunk, Philos. Mag. A 77, 1013 (1998)CrossRefGoogle Scholar
  57. 57.
    D.J. Wallis, D. Zhu, F. Oehler, S.P. Westwater, A. Pujol, C.J. Humphreys, Semicond. Sci. Technol. 28, 094006 (2013)CrossRefGoogle Scholar
  58. 58.
    S.K. Mathis, A.E. Romanov, L.F. Chen, G.E. Beltz, W. Pompe, J.S. Speck, J. Cryst. Growth 231, 371 (2001)CrossRefGoogle Scholar
  59. 59.
    O. Liubchenko, V. Kladko, O. Gudymenko, Semicond. Phys. Quantum Electron. Optoelectron. 20, 355 (2017)CrossRefGoogle Scholar
  60. 60.
    R. Hooke, T.A. Jeeves, J. ACM 8, 212 (1961)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oleksii I. Liubchenko
    • 1
    Email author
  • Vasyl P. Kladko
    • 1
  • Tomash M. Sabov
    • 1
  • Oleksandr V. Dubikovskyi
    • 1
  1. 1.V. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations