Advertisement

Fabrication, characterization, and electrical measurements of gas ammonia sensor based on organic field effect transistor

  • K. Amer
  • A. M. ElshaerEmail author
  • M. Anas
  • S. Ebrahim
Article
  • 214 Downloads

Abstract

Ammonia gas sensors were fabricated based on organic field effect transistor “OFET” with n-type Si or indium tin oxide “ITO” substrate as gate electrodes and SiO2 or polymethylmethacrylate “PMMA” as gate insulator layers, respectively. Different organic semiconductor channel “OSC” layers based on polyaniline “PANI” doped with dodecylbenzene sulfonic acid “DBSA”, polyaniline–emeraldine base “PANI:EB”, and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate “PEDOT:PSS” were created between source and drain electrodes. Confocal laser scanning microscopy “CLSM” was used to identify the OFET surface profiling and to measure the dimensions and thicknesses of OFET layers. The performance of the OFET ammonia sensor was evaluated based on the change in the electrical measurements such as the current–voltage “IDS–VDS” characteristic curve, saturation current, and threshold voltage at room temperature. Relative response “ΔR” and response/recovery time of the OFET ammonia sensors with different organic semiconductor layers were obtained from the change in the drain–source current “IDS” at zero gate voltage when the sensors were exposed to different consecutive cycles and evacuation of ammonia gas. The OFET sensor has PANI:DBSA as an active channel layer with Si or ITO gate exhibited ΔR to ammonia gas of ~ 63% and ~ 41.4% with response time of 2 and 4 s, respectively.

References

  1. 1.
    T. Nguyen, Y. Seol, N. Lee, Org. Electron. 12, 1816 (2007)Google Scholar
  2. 2.
    X. Zhang, R. Chan, A. Jose, S. Manohara, A. Macdiarmid, Synth. Met. 145, 23 (2004)CrossRefGoogle Scholar
  3. 3.
    H. Bai, G. Shi, Sen. J. 7, 267 (2007)Google Scholar
  4. 4.
    C. Liu, X. Liu, W. Lai, W. Huang, Adv. Mater. 1, 1802466 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, M. Freitag, C. Hone, A. Johnson, A. Macdiarmid, Appl. Phys. Lett. 83, 3800 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Oh, J. Lee, J. Jun, S. Kim, J. Jang, ACS Appl. Mater. Interfaces 9, 39526 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Hep, N. De Rooij, D. Strike, J. Hendrikse, Electrochem. Solid S.T. 2, 138 (1999)CrossRefGoogle Scholar
  8. 8.
    D. Chen, S. Lei, Y. Chen, Sen. J. 11, 6509 (2011)Google Scholar
  9. 9.
    K. Amer, S. Ebrahim, M. Soliman, A.M. Elshaer, 34th National Radio Science Conference, 440, March 2017Google Scholar
  10. 10.
    P. JB, in Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, Berlin, 2006)Google Scholar
  11. 11.
    N. Mokhtar, D. Chye, S. Phang, Polym. Polym. Compos. 25, 545 (2017)Google Scholar
  12. 12.
    S. Azim, S. Sathiyanarayanan, G. Venkatachari, Prog. Org. Coat. 56, 154 (2006)CrossRefGoogle Scholar
  13. 13.
    T. Castro, M. Ortegaa, F. Brown, J. Puig, Composites 38, 639 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Shukla, A. Bharadvaja, A. Tiwari, G. Dubey, Adv. Mater. Sci. 2, 129 (2010)Google Scholar
  15. 15.
    J. Ouyang, C. Chu, F. Chen, Y. Yang, J. Macromol. Sci. Phys. 41, 1497 (2004)CrossRefGoogle Scholar
  16. 16.
    I. Khan, A. Akhtar, S. Nabi, New J. Chem. 39, 3728 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran, P. Vijayanand, Arch. Appl. Sci. Res. 3, 147 (2011)Google Scholar
  18. 18.
    A. Ivanova, A. Tadjer, N. Gospodinova, J. Phys. Chem. B 10, 2555 (2006)CrossRefGoogle Scholar
  19. 19.
    J. Li, J. Liu, C. Gao, J. Zhang, H. Sun, Int. J. Photoenergy 650, 1 (2009)Google Scholar
  20. 20.
    M. Harb, S. Ebrahim, M. Soliman, M. Shabana, J. Electron. Mater. 47, 353 (2018)CrossRefGoogle Scholar
  21. 21.
    C.H. Srinivas, D. Srinivasu, B. Kavitha, N. Narsimlu, K. Siva Kumar, J. Appl. Phys. 1, 12 (2012)Google Scholar
  22. 22.
    D. Han, Y. Chu, L. Yang, Y. Liu, Z. Lv, Colloids Surf. A 259, 179 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Razeghi, in Handbook of Technology of Quantum Devices, 2010th edn. (Springer, Berlin, 2010)CrossRefGoogle Scholar
  24. 24.
    M. Campos, A. Miziara, F. Cristovan, E. Pereira, J. Appl. Polym. Sci. 131, 40688 (2014)Google Scholar
  25. 25.
    S. Kuo, C. Weng, R. Huang, Synth. Met. 88, 103 (1997)Google Scholar
  26. 26.
    D. Khodagholy, T. Herve, S. Sanaur, P. Leleux, R. Owens, Nat. Commun. 4, 2 (2013)Google Scholar
  27. 27.
    A. Heeger, N. Sariciftci, E. Namdas, in Semiconducting and Metallic Polymers, 1st edn. (Oxford University Press, Oxford, 2010)Google Scholar
  28. 28.
    S. Kondawar, S. Agrawal, S. Nimkar, H. Sharma, P. Patil, Adv. Eng. Mater. 3, 395 (2012)Google Scholar
  29. 29.
    L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, Adv. Mater. 25, 3419 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Virji, B. Weiller, P.C. Haussmann, R.B. Kaner, S.H. Tolbert, J. Chem. Educ. 85, 2 (2008)Google Scholar
  31. 31.
    D. Elkington, N. Cooling, W. Belcher, P. Dastoor, X. Zhou, Electronics 3, 234 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Yu, X. Yu, L. Zhang, H. Zeng, Sens. Actuators B 173, 133 (2012)CrossRefGoogle Scholar
  33. 33.
    N. Tanguya, M. Thompson, N. Yan, Sens. Actuators B 257, 1044 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Material Science Department, Institute of Graduate Studies and Research (IGSR)Alexandria UniversityAlexandriaEgypt
  2. 2.Technology Management DepartmentEgypt-Japan University for Science and Technology (E-JUST)Borg Alarab City, AlexandriaEgypt
  3. 3.Computer Engineering DepartmentHigher Institute of Engineering and TechnologyElbohairaEgypt
  4. 4.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations