Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20726–20733 | Cite as

Effect of gamma-ray irradiation on microstructure and mechanical property of Sn63Pb37 solder joints

  • Jianhao Wang
  • Songbai XueEmail author
  • Zhaoping Lv
  • Liujue Wang
  • Han Liu
  • Li Wen


In order to meet the reliability requirement of solder joints for future small satellite, the effect of γ-ray irradiation on the microstructure and mechanical property of Sn63Pb37 solder joints was investigated by scanning electron microscope observation and mechanical testing. The results showed that γ-ray irradiation possessed few influence on the thickness and morphology of intermetallic compound layer of Sn63Pb37/Cu. But the mechanical properties of solder joints were reduced with micro-voids and micro-cracks appearing in Pb-based solid solution during irradiation process. Energetic electrons created by γ-ray through Compton Effect, generated dislocated atoms which eventually resulted in the formation of microscopic defects and the decrement of mechanical property. After 960 h γ-ray irradiation at the dose rate of 0.25 Gy(Si)/s, the shear force of Sn63Pb37 solder joints was decreased by 11.47%. Compared with as-soldered joint, the ductility of irradiated solder joints was reduced with more unobvious shear dimples and lower impact toughness.



This project was supported by National Natural Science Foundation of China (Grant No. 51675269) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    J.H. Hoffman, R.C. Chaney, H. Hammack, J. Am. Soc. Mass Spectrom. 19, 1377 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Guo, R.W. Farquhar, Space Sci. Rev. 140, 49 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Matousek, Acta Astronaut. 61, 932 (2007)CrossRefGoogle Scholar
  4. 4.
    M. Tafazoli, Acta Astronaut. 64, 195 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Drews, A.C. de Keizer, H.G. Beyer, E. Lorenz, J. Betcke, W.G.J.H.M. van Sark, W. Heydenreich, E. Wiemken, S. Stettler, P. Toggweiler, S. Bofinger, M. Schneider, G. Heilscher, D. Heinemann, Sol. Energy 81, 548 (2007)CrossRefGoogle Scholar
  6. 6.
    C. Hajiyev, D. Cilden Guler, Prog. Aerosp. Sci. 90, 54 (2017)CrossRefGoogle Scholar
  7. 7.
    R. Sandau, K. Brieß, M. D’Errico, ISPRS J. Photogramm. Remote Sens 65, 492 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Sandau, Acta Astronaut. 66, 1 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Yin, B. Xiao, S.X. Ding, D. Zhou, IEEE Trans. Industr. Electron. 63, 3311 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Fajun, L. Ziyuan, T. Liying, Z. Yanping, M. Jing, L. Mykhaylo, F. Lan, T.H. Hoe, J. Chennupati, Nanotechnology 28, 125702 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, Y. Ouerdane, Opt. Express 20, 8457 (2012)CrossRefGoogle Scholar
  12. 12.
    V. Goiffon, F. Corbière, S. Rolando, M. Estribeau, P. Magnan, B. Avon, J. Baer, M. Gaillardin, R. Molina, P. Paillet, S. Girard, A. Chabane, P. Cervantes, C. Marcandella, IEEE Trans. Nucl. Sci. 62, 2956 (2015)CrossRefGoogle Scholar
  13. 13.
    D.J. Barnhart, T. Vladimirova, M.N. Sweeting, K.S. Stevens, IEEE J. Solid-State Circuits 44, 1617 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Xue, S. Xue, Y. Shen, H. Zhu, J. Mater. Sci. Mater. Electron. 25, 2671 (2014)CrossRefGoogle Scholar
  15. 15.
    N.-S. Liu, K.-L. Lin, J. Alloys Compd. 456, 466 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Liu, S. Xue, J. Mater. Sci. Mater. Electron. 26, 9424 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.-W. Chang, Y. Cheng, F. Xu, L. Helfen, T. Tian, M. Di Michiel, C. Chen, K.-N. Tu, T. Baumbach, Acta Mater. 117, 100 (2016)CrossRefGoogle Scholar
  18. 18.
    A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Des. 110, 275 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, L. Sun, Y.-H. Guo, C.-W. He, J. Mater. Sci. Mater. Electron. 25, 1209(2014)CrossRefGoogle Scholar
  20. 20.
    K.N. Tu, K. Zeng, Mater. Sci. Eng. 34, 1 (2001)CrossRefGoogle Scholar
  21. 21.
    M. Gökçen, A. Tataroğlu, Ş Altındal, M.M. Bülbül, Radiat. Phys. Chem. 77, 74 (2008)CrossRefGoogle Scholar
  22. 22.
    W.-Y. Chen, J.-G. Duh, Mater. Lett. 186, 279 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Wang, J. Tang, Q.-A. Huang, Sens Actuators A 177, 99 (2012)CrossRefGoogle Scholar
  24. 24.
    R.C. Murty, Nature 207, 398 (1965)CrossRefGoogle Scholar
  25. 25.
    A. Sharma, Y.-J. Jang, J.B. Kim, J.P. Jung, J. Alloys Compd. 704, 795 (2017)CrossRefGoogle Scholar
  26. 26.
    N. Bao, X. Hu, Y. Li, X. Jiang, J. Mater. Sci. Mater. Electron. 29, 8863 (2018)CrossRefGoogle Scholar
  27. 27.
    B. Margolin, A. Sorokin, V. Shvetsova, A. Minkin, V. Potapova, V. Smirnov, J. Nucl. Mater. 480, 52 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations