Advertisement

Network-like CuInS2 photocathode and modified with noble metal co-catalyst for photoelectrochemical water splitting

  • Qijun Cai
  • Zhifeng Liu
  • Chonghao Ma
  • Zhengfu Tong
  • Changcun Han
Article
  • 14 Downloads

Abstract

It is of great significance to explore new preparation methods and control the morphology and proportion of metal ions for the photoelectrochemical (PEC) water splitting of ternary sulfide photoelectrode. In this paper, the network-like CuInS2 film photocathodes were firstly prepared by hydrothermal growth method. The effects of different [Cu2+]/[In3+] molar ratios and concentrations of growth solution on CuInS2 films were investigated in detail. The mechanism of the synthetic reaction was studied. The best PEC photocurrent density of the CuInS2 film photoelectrode is − 0.81 mA/cm2 at − 0.6 V versus RHE when the [Cu2+]/[In3+] molar ratio is 0.4, the growth solution concentration is 8 mmol/L CuCl2·2H2O, 20 mmol/L InCl3·4H2O and 60 mmol/L C2H5NS. For the purpose of further improving photoelectrochemical properties of CuInS2 thin films, the Pt co-catalyst was loaded. The synthesized CuInS2–Pt thin film yielded a photocurrent density for − 1.92 mA/cm2 at − 0.6 V versus RHE due to the fast photogenerated electrons capture ability of Pt co-catalyst. The method of constructing photoelectrode film and the co-catalyst mechanism contributes to a sensational way for PEC water splitting of sulfide.

Notes

Acknowledgements

This work was financially supported by the Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy (No. HBSKFZD2017001), National Science Foundation of China (Grant No. 51702092), Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB282) and Science Foundation of Hubei University of Technology (Grant No. BSQD2017065).

References

  1. 1.
    Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Chem. Eng. J. 326, 411–418 (2017)CrossRefGoogle Scholar
  2. 2.
    Q. Hao, S. Hao, X. Niu, X. Li, D. Chen, H. Ding, Chin. J. Catal. 38, 278–286 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Hao, X. Niu, C. Nie, S. Hao, W. Zou, J. Ge, D. Chen, Phys. Chem. Chem. Phys. 18, 31410–31418 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  5. 5.
    J. Zhang, H. Ma, Z. Liu, Appl. Catal. B. 201, 84–91 (2017)CrossRefGoogle Scholar
  6. 6.
    Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Z. Lei, Appl. Catal. B. 214, 158–167 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Li, T. Takata, D. Cha, Adv. Mater. 25, 125–131 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, Appl. Catal. B. 163, 179–188 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Liu, K. Guo, J. Han, Y. Li, T. Cui, B. Wang, J. Ya, C. Zhou, Small 10, 3153–3161 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Hisatomi, J. Brillet, M. Cornuz, Faraday. Discuss. 155, 223–232 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Chen, Z. Liu, M. Zhou, P. Wu, J. Wei, J. Alloys Compd. 742, 918–927 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Basilio, Y.K. Hsu, W.H. Tu, J. Mater. Chem. 20, 8118–8125 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Ma, X. Xu, J. Xie, X. Li, Chin. J. Catal. 38, 1970–1980 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Luo, L. Steier, M.K. Son, Nano Lett. 16, 1848–1857 (2016)CrossRefGoogle Scholar
  15. 15.
    Q. Liu, Y. Yang, H. Li, R. Zhu, Q. Shao, S. Yang, Biosens. Bioelectron. 64, 147–153 (2015)CrossRefGoogle Scholar
  16. 16.
    L.J. Zhang, S. Li, B.K. Liu, ACS Catal. 4, 3724–3729 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Zhao, T. Minegishi, L. Zhang, Angew. Chem. Int. Edit. 53, 11808–11812 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Lv, D. Zhang, X. Pu, D. Kong, Z. Lu, X. Shao, Sep. Purif. Technol. 174, 97–103 (2017)CrossRefGoogle Scholar
  19. 19.
    D. DeAngelis, K.C. Kemp, N. Gaillard, ACS Appl. Mater. Interfaces 8, 8445–8451 (2016)CrossRefGoogle Scholar
  20. 20.
    M.D. Tessier, D. Dupont, K.D. Nolf, J.D. Roo, Z. Hens, Chem. Mater. 27, 4893–4898 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Kobayakawa, A. Teranishi, T. Tsurumaki, Y. Sato, A. Fujishima, Electrochim. Acta 37, 465–467 (1992)CrossRefGoogle Scholar
  22. 22.
    L. Zheng, L. Xu, Y. Song, C. Wu, M. Zhang, Y. Xie, Inorg. Chem. 48, 4003–4009 (2009)CrossRefGoogle Scholar
  23. 23.
    T. Li, C. Cai, T. Yeh, H. Teng, J. Alloys Compd. 550, 326–330 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Tang, Y.H. Ng, R. Amal, IEEE. Xplore 45, 2–6 (2014)Google Scholar
  25. 25.
    E.N. Petuenju, O. Savadogo, J. New Mater. Electron. Syst. 19, 169–179 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Haris, H. Widiyandari, W. Septina, IOP Conf. Series: Mater. Sci. Eng. 172, 12–21 (2017)Google Scholar
  27. 27.
    R. Reichert, Z. Jusys, R.J. Behm, J. Phys. Chem. C 119, 24750–24759 (2015)CrossRefGoogle Scholar
  28. 28.
    Y.S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J. Park, E.W. McFarland, Chem. Mater. 20, 3803–3805 (2008)CrossRefGoogle Scholar
  29. 29.
    Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, ChemSusChem. 10, 87–90 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Masudy-Panah, M.R. Siavash, C.S. Chua, A. Kushwaha, G.K. Dalapati, ACS Appl. Mater. Interfaces 9, 27596–27606 (2017)CrossRefGoogle Scholar
  31. 31.
    S.C. Price, A.C. Stuart, L. Yang, H. Zhou, J. Am. Chem. Soc. 133, 1052–1057 (2011)CrossRefGoogle Scholar
  32. 32.
    X. Yu, A. Shavel, X. An, J. Am. Chem. Soc. 136, 9236–9239 (2014)CrossRefGoogle Scholar
  33. 33.
    B.K. Patra, A. Shit, A.K. Guria, Chem. Mater. 27, 650–657 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Wang, N.T. Nguyen, Y. Zhang, Y. Bi, P. Schmuki, ChemSusChem 10, 2720–2727 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Zhang, Y. Li, C. Li, Q. Chen, Z. Zhen, X. Jiang, M. Zhong, F. Zhang, H. Zhu, ACS Nano 11, 12753–12763 (2017)CrossRefGoogle Scholar
  36. 36.
    K.C. Kao, Y. Kuroiwa, H. Nishi, T. Tatsuma, Phys. Chem. Chem. Phys. 19, 31429–31435 (2017)CrossRefGoogle Scholar
  37. 37.
    W. Septina, M. Sugimoto, D. Chao, Q. Shen, Phys. Chem. Chem. Phys. 19, 12502–12508 (2017)CrossRefGoogle Scholar
  38. 38.
    H.T. Yu, X. Quan, Y.B. Zhang, J. Am. Chem. Soc. 24, 7599–7604 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qijun Cai
    • 1
    • 2
  • Zhifeng Liu
    • 1
    • 3
  • Chonghao Ma
    • 1
    • 2
  • Zhengfu Tong
    • 1
    • 2
  • Changcun Han
    • 1
    • 2
  1. 1.Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar EnergyHubei University of TechnologyWuhanChina
  2. 2.School of ScienceHubei University of TechnologyWuhanChina
  3. 3.School of Materials Science and EngineeringTianjin Chengjian UniversityTianjinChina

Personalised recommendations