Advertisement

Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD

  • F. J. Ochoa-Estrella
  • A. Vera-Marquina
  • I. Mejia
  • A. L. Leal-Cruz
  • M. I. Pintor-Monroy
  • M. Quevedo-López
Article

Abstract

In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu2Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 1013 cm−3 and a resistivity of 1.64 × 105 Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 1015 to 1.26 × 1019 cm−3) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10−1 Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.

References

  1. 1.
    S.D. Kshirsagar, M.G. Krishna, S.P. Tewari, Optical characteristics of wurtzite ZnTe thin films. Mater. Sci. Semicond. Proc. 16, 1002–1007 (2013)CrossRefGoogle Scholar
  2. 2.
    J.H. Chang, J.S. Song, K. Godo, T. Yao, M.Y. Shen, T. Goto, ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices. Appl. Phys. Lett. 78, 566–568 (2001)CrossRefGoogle Scholar
  3. 3.
    V. Palekis, D. Shen, D. Hodges, S. Bhandaru, E. Stefanakos, D.L. Morel, C.S. Ferekides. Structural properties of CdTe and ZnTe thin films deposited on flexible foil substrates. In IEEE PVSC, pp. 1960–1963 (2010)Google Scholar
  4. 4.
    G. Lastra, A. Olivas, J.I. Mejía, M.A. Quevedo-López. Thin-films and transistors of p-ZnTe. Solid-State Electron. 116, 56–59 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Liu, G. Chen, B. Liang, G. Yu, H. Huang, D. Chen, G. Shen, Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible light photodetectors. Opt. Express 21, 7799–7810 (2013)CrossRefGoogle Scholar
  6. 6.
    A.E. Rakgshani, S. Thomas, Nitrogen doping of ZnTe for the preparation of ZnTe/ZnO light-emitting diode. J. Mater. Sci. 48, 6386–6392 (2013)CrossRefGoogle Scholar
  7. 7.
    A.K.S. Aqili, Z. Ali, A. Maqsood, Characterization of zinc telluride thin films deposited by two-source technique and post-annealed in nitrogen ambient. J. Cryst. Growth 317, 47–51 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Kim, K. Park, S. Lee, B. Yoo, Electrochemical synthesis of ZnTe thin films from citrate bath and their electrical properties with incorporation of Cu. Mater. Chem. Phys. 179, 10–16 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Romeo, G. Sberveglieri, L. Tarricone, J. Vidal, A. Wojtowicz, Electrical properties of Sb-doped ZnTe thin films. Phys. State Solid 47, 371–374 (1978)CrossRefGoogle Scholar
  10. 10.
    D. Wu, Y. Jiang, X. Yao, Y. Chang, Y. Zhang, Y. Yu, Z. Zhu, Y. Zhang, X. Lan, H. Zhong, Construction of crossed heterojunctions from p-ZnTe and n-CdSe nanoribbons and their photoresponse properties. J. Mater. Chem. C 2, 6547–6553 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Lastra, P.A. Luque, M.A. Quevedo-Lopez, A. Olivas, Electrical properties of p-type ZnTe thin films by immersion in Cu solution. Mater. Lett. 126, 271–273 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Hernandez-Como, F. Berrellez-Reyes, R. Mizquez-Corona, O. Ramirez-Esquivel, I. Mejia, M. Quevedo-López, CdS-based p-i-n diodes using indium and copper doped CdS films by pulsed laser deposition. Semicond. Sci. Technol. 30, 065003–065010 (2015)CrossRefGoogle Scholar
  13. 13.
    G.K. Rao, K.V. Bangera, G.K. Shivakumar, Studies on the photoconductivity of vacuum deposited ZnTe thin films. Mater. Res. Bull. 45, 1357–1360 (2010)CrossRefGoogle Scholar
  14. 14.
    Kaye and Laby Tables of Physical and Chemical Constants (1995) National Physics Laboratory. http://www.Kayelaby.npl.co.uk. Accessed 5 Nov 2016
  15. 15.
    Q. Gul, M. Zakria, T.M. Khan, A. Mahmood, A. Iqbal, Effects of Cu incorporation on physical properties of ZnTe thin films deposited by thermal evaporation. Matefigurer. Sci. Semicond. Process. 19, 17–23 (2014)CrossRefGoogle Scholar
  16. 16.
    F. El Akkad, Y. Abdulraheem, Morphology, electrical, and optical properties of heavily doped ZnTe:Cu thin films. J. Appl. Phys. 114, 183501–183512 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Ghosh, D. Ghosh, S. Hussain, R. Bhar, A.K. Pal, Growth of ZnTe films by pulsed laser deposition technique. J. Alloys Compd. 541, 104–110 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Shaker, A. Zekry, A new and simple model for plasma- and doping-induced band gap narrowing. J. Electron. Devices 8, 293–299 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  2. 2.División de Ingeniería ElectrónicaInstituto Tecnológico Superior de CajemeCiudad ObregonMexico
  3. 3.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations