Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20615–20622 | Cite as

Studies on thermal nonlinear optical effects on cyclododecanone crystals for IR optical switching application

  • D. Bharath
  • S. Kalainathan
  • D. Anbuselvi
Article

Abstract

A cyclic ketone, cyclododecanone (CDD) and its derivatives has been synthesized by direct aldol condensation reaction. CDD derivative (–CH3, –OMe, –2Br, –2Cl, –4Cl, 2CF3, –C6H6) crystals were grown in the mixture of solvent tetrahydrofuran and ethanol by Natural evaporation method. The linear optical property of CDD derivative crystals has been studied using UV–Vis–NIR spectroscopy. The optical constants are calculated theoretically in the wavelength range 190–1100 nm. The third order nonlinear optical property of CDD derivatives has investigated by using z-scan technique using He–Ne laser (632.8 nm). The saturation absorption and self-defocusing effect was observed in z-scan open and closed aperture methods respectively. The nonlinear optical effects were due to the thermal mechanism processes of the incident laser power passing through an optical material. The response time of CDD derivative has found to be in the order of milliseconds. The two figures of merit W > 1 and T < 1 are suitable for optical switching application. The refractive index of CDD crystals has been measured using Abbe’s refractometer.

Notes

Acknowledgements

The authors thank the management of VIT University Vellore for proving the excellent research facilities.

References

  1. 1.
    S.R. Marder, J.W. Perry, G. Bourhill, C.B. Gorman, B.G. .Tiemann, K. Mansour, Science 261, 186–189 (1993)CrossRefGoogle Scholar
  2. 2.
    S.R. Forrest, Nature 428, 29 (2004)CrossRefGoogle Scholar
  3. 3.
    R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 1992)Google Scholar
  4. 4.
    E.M. Attas, M.G. Sowa, T.B. Posthumus, B.J. .Schattka, H.H. Mantsch, S.L.L. Zhang, Biopolymers 67, 96 (2002)CrossRefGoogle Scholar
  5. 5.
    I. Cohanoschi, M. Garcia, C. Toro, K.D. Belfield, F.E. Hernandez, Chem. Phys. Lett. 430, 133–138 (2006)CrossRefGoogle Scholar
  6. 6.
    S.S. Kumar, R.S. Venugopal Rao, L. Giribabu, D. Narayana Rao, Chem. Phys. Lett. 447, 274–278 (2007)CrossRefGoogle Scholar
  7. 7.
    I. Cohanoschi, K.D. Belfield, J. Chem. Phys. 124, 194707 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Forchel, Nat. Mater. 2, 13–14 (2003)CrossRefGoogle Scholar
  9. 9.
    S.A. Haque, J. Nelson, Science 327, 1466 (2010)CrossRefGoogle Scholar
  10. 10.
    V. Sathesh, B. Umamahesh, G. Ramachandran, R.S. Rathore, K.I. Sathiyanarayanan, New J. Chem. 36, 2292 (2012)CrossRefGoogle Scholar
  11. 11.
    T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, J. Qin, Chem. Phys. Lett. 451, 213–217 (2008)CrossRefGoogle Scholar
  12. 12.
    M.G. Kuzyk, C.W. Dirk, Z-Scan Measurements of Optical Nonlinearities (Marcel Dekker, Inc., New York, 1998), p. 655–692Google Scholar
  13. 13.
    V. Sathesh, K.I. Sathiyanarayanan, New J. Chem. 40, 3833–3842 (2016)CrossRefGoogle Scholar
  14. 14.
    P.A. Ilenikhena, Afr. Phys. Rev. 2, 68 (2008)Google Scholar
  15. 15.
    J. Tauc, The Optical Properties of Solids (North-Holland, Amsterdam, 1970)Google Scholar
  16. 16.
    D.D.O. .Eya, A.J. Ekpunobi, C.E. Okeke, Acad. Open Internet J. 17, 13 (2006)Google Scholar
  17. 17.
    M. Sheik-bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland. IEEE J. Quantum Electron. 26, 4 (1990)CrossRefGoogle Scholar
  18. 18.
    E.W. Van Stryland, M. Sheik-Bahae, in Characterization Techniques and Tabulations for Organic Nonlinear Materials, ed. By M.G. Kuzyk, C.W. Dirk (Marcel Dekker, Inc., New York, 1998), pp. 655–692Google Scholar
  19. 19.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Elsevier Publications, Amsterdam, 2011)Google Scholar
  20. 20.
    B. Uma, S. JeromeDas, S. Krishnan, B. Milton Boaz, Physica B 406, 2834 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Subashini, R. Kumaravel, S. Leela, H.S. Evans, D. Sastikumar, K. Ramamurthi, Spectrochim. Acta A 78, 935 (2011)CrossRefGoogle Scholar
  22. 22.
    S.L. Castanon Alonso, O.G. Morales-Saavedra, S.B. Pimiento, R.O. Martinez, A.A. Rodriguez Rosales, M.E. Hernandez-Rojas, Mater. Chem. Phys. 133, 528 (2012)CrossRefGoogle Scholar
  23. 23.
    A.Y. Al-Ahmad, G.M. Shabeeb, A.Q. .Abdullah, K.M. Ziadan, Optik 122, 1885 (2011)CrossRefGoogle Scholar
  24. 24.
    Z. Zang, Appl. Opt. 52, 5701–5706 (2013)CrossRefGoogle Scholar
  25. 25.
    Z.-G. Zang, Y.-J. Zhang, J. Mod. Opt. 59(2), 161–165 (2012)CrossRefGoogle Scholar
  26. 26.
    Z. Zang, Y. Zhang, Appl. Opt. 51, 3424–3430 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMVJ College of EngineeringBangaloreIndia
  2. 2.Centre for Crystal GrowthVIT UniversityVelloreIndia
  3. 3.Department of PhysicsLoyola CollegeChennaiIndia

Personalised recommendations