Advertisement

Magnetism in BiFe1−xNixO3: studied through electron spin resonance spectroscopy

  • M. R. Biswal
  • J. Nanda
  • N. C. Mishra
  • S. S. Acharya
  • D. K. Mishra
  • V. V. Srinivasu
Article

Abstract

The effect of Ni doping in BiFe1−xNixO3 (BFNO) multiferroics are studied by X-ray diffraction (XRD), Fourier transmission infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), hysteresis loop (M–H), temperature dependent magnetization (FC-ZFC) measurements and electron spin resonance (ESR) techniques. The XRD and FTIR studies indicate that the BFNO compounds remain in rhombohedral (R3c) phase without appearance of any structural transformation due to Ni doping. The XPS studies show the oxidation states of Fe ions as 3+, whereas Bi is found to be in a mixed valence state of 2+ and 3+ in BFNO. The Ni ion doping enhances the saturation magnetization from 0.179 emu/g (x = 0.025) to 2.38 emu/g (x = 0.20), which is higher than the reported values found in literature. The FC-ZFC magnetization studies suggest the presence of a magnetic phase transition from a weak ferromagnetic to a spin glass state at low temperature. The ESR studies confirm the ferromagnetic state of BFNO samples.

References

  1. 1.
    T. Stevenson, D.G. Martin, P.I. Cowin, A. Blumfield, A.J. Bell, T.P. Comyn, P.M. Weaver, Piezoelectric materials for high temperature transducers and actutaors. J. Mater. Sci. 26(12), 9256 (2015)Google Scholar
  2. 2.
    M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38(R), 123 (2005)CrossRefGoogle Scholar
  3. 3.
    K. Sharma, A. Singh, Advances in photovoltaic behaviour of ferroelectric BiFeO3. J. Nanosci. Technol. 2(2), 85 (2016)Google Scholar
  4. 4.
    D. Moitra, C. Anand, B.K. Ghosh, M. Chondel, N.N. Ghosh, One-dimensional BiFeO3 nanowire-reduced graphene oxide nanocomposite as excellent supercapacitor electrode material. ACS Appl. Energy Mater. 1(2), 464 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Nayak, A. Soam, J. Nanda, C. Mahender, M. Singh, D. Mahapatra, R. Kumar, Sol-gel synthesized BiFeO3-graphene nanocomposites as efficient electrode for supercapacitor applications. J. Mater. Sci. 29(11), 9361 (2018)Google Scholar
  6. 6.
    C. Yang, Y. Chen, W. Guo, Y. Gao, C. Song, Q. Zhang, N. Zheng, X. Han, C. Guo, Bismuth ferrite-based nanoplatform design: an ablation mechanism study of solid tumor and NIR-triggered photothermal/photodynamic combination cancer therapy. Adv. Funct. Mater. 28(18), 1706827 (2018)CrossRefGoogle Scholar
  7. 7.
    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 093903 (2005)CrossRefGoogle Scholar
  8. 8.
    V.M. Gaikward, S.A. Acharya, Investigation on magnetic behaviour of BiFeO3: spin glass view point. Adv. Mater. Lett. 5, 157–160 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRefGoogle Scholar
  10. 10.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  11. 11.
    C. Fu, C. Long, W. Cai, G. Chen, X. Deng, Structural and magnetic properties of bismuth ferrite nanopowders prepared via Sol–Gel method. Ferroelectrics 460, 157–161 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature. J. Nanomater. 2011, 797639 (2011)Google Scholar
  13. 13.
    D. Zhang, P. Shi, X. Wu, W. Ren, Structural and electrical properties of sol–gel-derived Al-doped bismuth ferrite thin films. Ceram. Int. 39, S461–S464 (2013)CrossRefGoogle Scholar
  14. 14.
    Z. Ali, A. Atta, Y. Abbas, K. Sedeek, A. Adam, E. Abdeltwab, Multiferroic BiFeO3 thin films: structural and magnetic characterization. Thin Solid Films 577, 124–127 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Chybezynska, P. Lawniczak, B. Hilczer, B. Leska, R. Pankiewicz, A. Pietraszko, I. Kepinski, T. Kaluski, P. Cieluch, F. Matelski, B. Andrzejewski, Synthesis and properties of bismuth ferrite multiferroic nanoflowers. J. Mater. Sci. 49, 2596–2604 (2014)CrossRefGoogle Scholar
  16. 16.
    A.M. Kadomtseva, A.K. Zvezdin, F. Yu, A.P. Popov Pyatakvo, G.P. Vorob’ev, Space–time parity violation and magnetoelectric interactions in antiferromagnets. JETP Lett. 79, 571 (2004)CrossRefGoogle Scholar
  17. 17.
    C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005) R)CrossRefGoogle Scholar
  18. 18.
    M. Kumar, K.L. Yadav, Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization. Appl. Phys. Lett. 91, 242901 (2007)CrossRefGoogle Scholar
  19. 19.
    B.C. Luo, C.L. Chen, Z. Xu, X. Xie, Effect of Cr substitution on the multiferroic properties of BiFe1–xCrxO3 compounds. Phys. Lett. A 374, 4265–4268 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Kumar, K.L. Yadav, Magnetic, Magnetocapacitance and dielectric properties of Cr doped bismuth ferrite nanoceramics. Mater. Sci. Eng. B 176, 227–230 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L.M. Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  22. 22.
    A. Kumar, K.L. Yadav, The effect of Ni substitution on magnetic, dielectric and magnetoelectric properties in BiFe1–xNixO3 system. Phys. B 405, 4650–4654 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Enhancement of ferromagnetic properties in Ni-doped BiFeO3. Mater. Sci. Pol. 27, 219–224 (2009)CrossRefGoogle Scholar
  24. 24.
    Y.A. Chaudhary, C.M. Mahajan, P.P. Jagtap, S.T. Bendre, Structural, magnetic and dielectricpproperties of nano-crystalline Ni-doped BiFeO3 ceramics formulated by self-propagating high-temperature synthesis. J. Adv. Ceram. 2, 135–140 (2013)CrossRefGoogle Scholar
  25. 25.
    Y.H. Wang, X. Qi, The effects of nickel substitution on bismuth ferrite. Procedia Eng. 36, 455–461 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudhaker, R. Naik, M.S.R. Rao, G. Lawes, Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys. 21, 036001 (2009)Google Scholar
  27. 27.
    M.R. Biswal, J. Nanda, N.C. Mishra, S. Anwar, A. Mishra, Dielectric and impedance spectroscopic studies of multiferroic BiFe1–xNixO3. Adv. Mater. Lett. 5, 531–537 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, 5th edn. (Wiley, New York, 1997)Google Scholar
  29. 29.
    S. Chakraborty, S. Mukherjee, S. Mukherjee, Effect of yittrium doping on the properties of bismuth ferrites: a review. Int. J. Semicond. Sci. Technol. 3, 1 (2013)Google Scholar
  30. 30.
    D. Varshney, A. Kumar, K. Verma, Effect of yittrium doping on structural, thermal and dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 509, 8421 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Bhusan, Z. Wang, J.V. Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, Tailoring the magnetic and optical characteristics of nanocrystalline BiFeO3 by Ce doping. J. Am. Ceram. Soc. 1, 8 (2012)Google Scholar
  32. 32.
  33. 33.
    D.K. Mishra, X. Qi, Energy Levels and photoluminescence properties of Ni-doped bismuth ferrite. J. Alloys Compd. 504, 27 (2010)CrossRefGoogle Scholar
  34. 34.
    A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. Mclntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron particles. Surf. Interface Anal. 36, 1564 (2004)CrossRefGoogle Scholar
  35. 35.
    S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl. Phys. Lett. 87, 262907 (2005)CrossRefGoogle Scholar
  36. 36.
    J. Xu, G. Wang, H. Wang, D. Ding, Y. He, Synthesis and weak ferromagnetism of Dy-doped BiFeO3 powders. Mater. Lett. 63, 855 (2009)CrossRefGoogle Scholar
  37. 37.
    J.-B. Li, G.H. Rao, J.K. Liang, Y.H. Luo, J. Luo, J.R. Chen, Magnetic properties of Bi(Fe1–xCrx)O3 synthesized by a combustion method. Appl. Phys. Lett. 90, 162513 (2007)CrossRefGoogle Scholar
  38. 38.
    S.K. Pradhan, J. Das, P.P. Rout, V.R. Mohanta, S.K. Das, S. Samantaray, D.R. Sahu, J.L. Huang, S. Verma, B.K. Roul, Effect of holomium substitution for the improvement of multiferroic properties of BiFeO3. J. Phys. Chem. Solids 71, 1557 (2010)CrossRefGoogle Scholar
  39. 39.
    K. Saravana Kumar, C. Venkataswaran, D. Kannan, B. Tiwari, M.S. Ramachandra Rao, Mechanical milling assisted synthesis of Ba–Mn Co-substituted BiFeO3 ceramics and their properties. J. Phys. D 45, 415302 (2012)CrossRefGoogle Scholar
  40. 40.
    Y.A. Chaudhary, C.M. Mahajan, P.P. Jagtap, S.T. Bendre, Structural, magnetic and dielectric properties of nano-crystalline Ni-doped BiFeO3 ceramics formulated by self-propagating high-temperature synthesis. J. Adv. Ceram. 2, 135 (2013)CrossRefGoogle Scholar
  41. 41.
    S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, Structural and multiferroic properties of La-modified BiFeO3 ceramics. J. Appl. Phys. 101, 034104 (2007)CrossRefGoogle Scholar
  42. 42.
    J. Iqbal, X. Liu, N. Ahmad, T. Harumoto, D. Yu, R. Yu, Room-temperature spin glass and near band edge properties of highly disorder (FeCo)0.03Zn0.97O and (FeCoNi)0.03Zn0.97O nanorods. J. Appl. Phys. 107, 043902 (2010)CrossRefGoogle Scholar
  43. 43.
    M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, J.F. Scott, Spin-glass transition in single-crystal BiFeO3. Phys. Rev. B 77, 144403 (2008)CrossRefGoogle Scholar
  44. 44.
    G. Gulpnar, A.N. Berker, Quenched-vacancy induced spin-glass order. Phys. Rev. E 79, 021110 (2009)CrossRefGoogle Scholar
  45. 45.
    K. Eason, J.F. Kong, Z.W. Kho, C.H. Sim, M. Tran, J.C. Huang, M. Sabino, S.K. He, The effects of Dzyaloshinskii–Moriya interactions on the ferromagnetic resonance response in nanosized devices. J. Appl. Phys. 115, 17C902 (2014)CrossRefGoogle Scholar
  46. 46.
    M. Tovar, X. Obradors, F. Perez, S.B. Duro, J. Rivas, D. Chateigner, P. Bordet, J. Chenavas, Weak ferromagnetism and spin glass like behavior in Tb2CuO4. J. Appl. Phys. 70, 6095 (1991)CrossRefGoogle Scholar
  47. 47.
    L. Wu, C. Dong, H. Chen, J. Yao, C. Jiang, D. Xue, Hydrothermal synthesis and magnetic properties of bismuth ferrites nanocrystals with various morphology. J. Am. Ceram. Soc. 95, 3922 (2012)CrossRefGoogle Scholar
  48. 48.
    J.W. Lin, T. Tite, Y.H. Tang, C.S. Lue, Y.M. Chang, J.G. Lin, Correlation of spin and structure in doped bismuth ferrite nanoparticles. J. Appl. Phys. 111, 07D910 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. R. Biswal
    • 1
  • J. Nanda
    • 2
  • N. C. Mishra
    • 3
  • S. S. Acharya
    • 4
  • D. K. Mishra
    • 2
  • V. V. Srinivasu
    • 5
  1. 1.Department of PhysicsHi-Tech Engineering CollegeBhubaneswarIndia
  2. 2.Department of Physics, Faculty of Engineering and Technology (ITER)Siksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia
  3. 3.Department of PhysicsUtkal UniversityBhubaneswarIndia
  4. 4.Institute of PhysicsSachivalaya MargBhubaneswarIndia
  5. 5.Department of Physics, College of Science, Engineering and TechnologyUniversity of South AfricaJohannesburgSouth Africa

Personalised recommendations