Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20522–20529 | Cite as

Investigating the mechanical properties of graphene and silicene and the fracture behavior of pristine and hydrogen functionalized silicene

  • Mehran ValiEmail author
  • Saeed Safa
  • Daryoosh Dideban


In this paper, we obtain mechanical properties of monolayer graphene, bilayer graphene and silicene with the aid of molecular dynamics simulation. Thus, the reason for mechanical behavior of these materials is analyzed. For this purpose, first we perform the stress–strain analysis for each structure under tension loading and then we calculate Young’s modulus, tensile strength, and fracture strain of these structures. It is shown that tensile strength of bilayer graphene sheet of type aa is more than type ab and monolayer graphene. Moreover, it is shown that the tensile strength of silicene sheet is less than mono and bilayer graphene. We also investigate the impact of hydrogen functionalization on the mechanical properties of silicene. Hence we consider two situations of random and patterned distribution of hydrogen coating on a silicene sheet. The results indicate that the mechanical properties of the silicene are degraded as a result of functionalizing with hydrogen atoms. It is also revealed that the distribution method of hydrogen atoms affects the strength and fracture strain of hydrogen functionalized silicene.


  1. 1.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 102, 10451–10453 (2005)CrossRefGoogle Scholar
  2. 2.
    P. Miro, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014)CrossRefGoogle Scholar
  3. 3.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  4. 4.
    Y.M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Operation of graphene transistors at gigahertz frequencies. Nano Lett. 9, 422–426 (2009)Google Scholar
  5. 5.
    N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007)CrossRefGoogle Scholar
  6. 6.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  7. 7.
    J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead et al., Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)CrossRefGoogle Scholar
  8. 8.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  9. 9.
    M. Birowska, K. Milowska, J.A. Majewski, Van Der Waals density functionals for graphene layers and graphite. Acta Phys. Pol. A, 120, 845–848 (2011)CrossRefGoogle Scholar
  10. 10.
    W. Tao, G. Qing, L. Yan, S. Kuang, A comparative investigation of an AB- and AA-stackedbilayer graphenesheet under an applied electric field: a density functional theory study. Chin. Phys. B 21, 067301 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Xu, Infrared and Raman spectra of AA-stacking bilayer graphene. Nanotechnology 21, 065711 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Zhong, R. Pandey, S.P. Karna, Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon 50, 784–790 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Guo, W. Guo, C. Chen, Semiconducting to half-metallic to metallic transition on spin-resolved zigzag bilayer graphene nanoribbons. J. Phys. Chem. C 114, 13098–13105 (2010)CrossRefGoogle Scholar
  14. 14.
    K.J. Koski, Y. Cui, The new skinny in two-dimensional nanomaterials. ACS Nano 7, 3739–3743 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Srinivasu, S.K. Ghosh, Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C, 116, 5951–5956 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Jain, T. Bansal, C.A. Durcan, Y. Xu, B. Yu, Monolayer graphene/hexagonal boron nitride heterostructure. Carbon 54, 396–402 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Leandri, B. Ealet, G.L. Lay, Graphene-like silicon nanoribbons on Ag (1 1 0): a possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010)CrossRefGoogle Scholar
  18. 18.
    F.B. Zheng, C.W. Zhang, The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res. Lett. 7, 422 (2012)CrossRefGoogle Scholar
  19. 19.
    C.W. Zhang, S.S. Yan, First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation. J. Phys. Chem. C 116, 4163–4166 (2012)CrossRefGoogle Scholar
  20. 20.
    R.W. Zhang, C.W. Zhang, W.X. Ji, S.S. Li, S.J. Hu, S.S. Yan, P. Li, P.J. Wang, F. Li, Ethynyl-functionalized stanene film: a promising candidate as large-gap quantum spin Hall insulator. New J. Phys. 17, 083036 (2015)CrossRefGoogle Scholar
  21. 21.
    R.W. Zhang, C.W. Zhang, W.X. Ji, P. Li, P.J. Wang, S.S. Li, S.S. Yan, Silicon-based chalcogenide: unexpected quantum spin Hall insulator with sizable band gap. Appl. Phys. Lett. 109, 182109 (2016)CrossRefGoogle Scholar
  22. 22.
    Y.P. Wang, W.X. Ji, C.W. Zhang, P. Li, F. Li, P.J. Wang, S.S. Li, S.S. Yan, Large-gap quantum spin Hall state in functionalized dumbbell stanene. Appl. Phys. Lett. 108, 073104 (2016)CrossRefGoogle Scholar
  23. 23.
    G.G. Guzman-Verri, L.C. Lew Yan Voon, Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)CrossRefGoogle Scholar
  24. 24.
    C.C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicone and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)CrossRefGoogle Scholar
  25. 25.
    J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia et al., Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007)CrossRefGoogle Scholar
  26. 26.
    R. Ansari, S. Ajori, B. Motevalli, Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct. 51, 274–289 (2012)CrossRefGoogle Scholar
  27. 27.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  28. 28.
    M. Mirnezhad, R. Ansari, H. Rouhi, M. Seifi, M. Faghihnasiri, Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption. Solid State Commun. 152, 1885–1889 (2012)CrossRefGoogle Scholar
  29. 29.
    Q.X. Pei, Y.W. Zhang, V.B. Shenoy, Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21, 115709–115717 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Li, F. Ding, B.I. Yakobson, Hydrogen storage by spillover on graphene as a phase nucleation process. Phys. Rev. B 78, 0414021–0414024 (2008)Google Scholar
  31. 31.
    T. Roman, W.A. Dino, H. Nakanishi, H. Kasai, T. Sugimoto, K. Tange, Hydrogen pairing on graphene. Carbon 45, 203–228 (2007)CrossRefGoogle Scholar
  32. 32.
    S.J. Plimpton, Fast parallel algorithms for short-rangemolecular dynamics. J. Comp. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  33. 33.
    A.C.T. van Duin et al., ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRefGoogle Scholar
  34. 34.
    A.C.T. van Duin et al., ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107(19), 3803–3811 (2003)CrossRefGoogle Scholar
  35. 35.
    D.H. Tsai, The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979)CrossRefGoogle Scholar
  36. 36.
    A. Adnan, C.T. Sun, H. Mahfuz, A molecular dynamics simulation study toinvestigate the effect of filler size on elastic properties of polymernanocomposites. Compos. Sci. Technol. 67, 348–356 (2007)CrossRefGoogle Scholar
  37. 37.
    Q.X. Pei, Y.W. Zhang, V.B. Shenoy, A molecular dynamics study of the mechanical propertiesof hydrogen functionalized graphene. Carbon 48, 898–904 (2010)CrossRefGoogle Scholar
  38. 38.
    D.C. Elias et al., Control of graphene properties by reversible hydrogenation. Science 323, 1–20 (2009)CrossRefGoogle Scholar
  39. 39.
    P. Sessi et al., Patterning graphene at the nanometer scale via hydrgen desorption. Nano Lett. 9, 4343–4347 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Malek-Ashtar University of TechnologyTehranIran
  3. 3.Depertment of Electrical and Computer EngineeringUniversity of KashanKashanIran

Personalised recommendations