Advertisement

Enhanced long afterglow of SrAl2Si2O8:Eu2+ by codoping Dy3+

  • Zhen Wei
  • Weixi Mao
  • Kehui Zhang
  • Ye Tian
Article
  • 3 Downloads

Abstract

Eu2+/Dy3+ doped SrAl2Si2O8 phosphors were synthesized by a solid state reaction. The phase and luminescent properties of the synthesized phosphors were investigated by the X-ray powder diffraction, photoluminescence spectra, decay curves and the thermo-luminescence glow curves. The XRD results show that the doped Eu2+/Dy3+ has no influence on the phase of SrAl2Si2O8. The incorporation of Dy3+ could significantly enhance the intensity and prolong the afterglow duration of SrAl2Si2O8:Eu2+. The co-doped Dy3+ ions act as trap centers and trap the electrons generated during exposure of the phosphor to an excitation source, which induces the longer afterglow comparing with Eu2+ singly doped SrAl2Si2O8 phosphor.

Notes

Acknowledgements

This work is supported by the Basic research Project of Hebei Province (18961031D), the science and technology research project of Hebei’s colleges and university (No. BJ2017035), the Science and Technology Research and Development Program of Hebei Province, Zhangjiakou city (17120011D) and the Doctoral Foundation of Hebei North University (12995557).

References

  1. 1.
    P. Chandrakar, R.N. Baghel, D.P. Bisen, B.P. Chandra, Luminescence 31, 164 (2016)CrossRefGoogle Scholar
  2. 2.
    I.P. Sahu, J. Mater. Sci.: Mater. Electron. 26, 7059 (2015)Google Scholar
  3. 3.
    T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc. 143, 2670 (1996)CrossRefGoogle Scholar
  4. 4.
    P. Wang, X. Xu, D. Zhou, X. Yu, J. Qiu, Inorg. Chem. 54, 1690 (2015)CrossRefGoogle Scholar
  5. 5.
    B. Yuan, Y. Song, Y. Sheng, K. Zheng, X. Zhou, P. Ma, X. Xu, H. Zou, J. Solid State Chem. 232, 169 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Ma, Y. Song, B. Yuan, Y. Sheng, C. Xu, H. Zou, K. Zheng, Ceram. Int. 43, 60 (2017)CrossRefGoogle Scholar
  7. 7.
    P. Ma, B. Yuan, Y. Sheng, K. Zheng, Y. Wang, C. Xu, H. Zou, Y. Song, J. Alloys Compd. 714, 627 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Zheng, Q. Fei, Z. Mao, Y. Liu, Y. Cai, Q. Lu, H. Tian, D. Wang, J. Rare Earth 29, 522 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Chen, Y. Liu, H. Liu, H. Ding, M. Fang, Z. Huang, Opt. Mater. 42, 80 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Hua, S. Xu, D. Deng, S. Zhao, H. Wang, L. Huang, Opt. Commun. 284, 27 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Xu, L. Wang, M. Li, W. Ran, Z. Deng, R. Houzong, J. Shi, Phys. Status Solidi A 214, 1700013 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Shi, Y. Wang, Z. Wang, P. Zhang, Z. Hong, X. Fan, G. Qian, Acta Photonica Sin. 37, 171 (2008)Google Scholar
  13. 13.
    M. Zhao, Z. Zhao, L. Yu, L. Yang, J. Jiang, X. Li, G. Li, J. Mater. Sci.: Mater. Electron. 29, 1832 (2018)Google Scholar
  14. 14.
    X. Tan, Y. Wang, M. Zhang, J. Photoch. Photobio A 363, 65 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Li, J. Mater. Sci.: Mater. Electron. 27, 11012 (2016)Google Scholar
  16. 16.
    H. Liu, Z. Guo, J. Lumin. 187, 181 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Chen, F. Wang, J. Yu, H. Zhang, X. Zhang, J. Mol. Struct. 1128, 1 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceHebei North UniversityZhangjiakouChina
  2. 2.Engineering Technology Research Center of Population Health Informatization in Hebei ProvinceZhangjiakouChina
  3. 3.College of Electrical EngineeringHebei University of Architecture and EngineeringZhangjiakouChina

Personalised recommendations