Advertisement

The frequency behavior of hysteresis loops in Mn:Fe:KTN ferroelectric single crystal

  • Xiangguo Ma
  • Zhen Li
  • Qieni Lu
  • Bihua Li
  • Mingdi Zhang
Article
  • 25 Downloads

Abstract

In this paper, the frequency (f) behavior of hysteresis loops in a tetragonal Mn:Fe:KTN crystal is investigated. We have found that the shape of PE hysteresis loops experiences systemic f-dependent changes from an asymmetric double hysteresis loop to a normal single loop, as the frequency changes from high to low (150–0.01 Hz). The shape of PE loop is strongly f-dependent only at low frequency (f < 1 Hz) and f-independent at the high one (f ≥ 10 Hz), and the maximum polarization stays unchanged with f varying at the same temperature and amplitude of electric field. The frequency-dependent properties of hysteresis loop stem from the forced vibration of two types of electric dipoles induced by the off-center displacement and the local composition gradient distribution, with different response time to applied electric field. The results are of great value for enhancing device performance and fabricating required devices with specific performance characteristics.

Notes

Acknowledgements

The work is supported by Open Project of State Key Laboratory of Transient Optics and Photonic Technology (SKLST201505) and Key Project of Nature Science Foundation of Tianjin (No. 18JCZDJC31700).

References

  1. 1.
    T. Mikolajick, S. Slesazeck, M.H. Park, U. Schroeder, MRS Bull. 43, 340 (2018)CrossRefGoogle Scholar
  2. 2.
    C.H. Ahn, T. Tybell, L. Antognazza, K. Char, R.H. Hammond, M.R. Beasley, Ø Fischer, J.M. Triscone, Science 276, 1100 (1997)CrossRefGoogle Scholar
  3. 3.
    Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, H. Ko, ACS Nano 12, 4045 (2018)CrossRefGoogle Scholar
  4. 4.
    V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthe´le´my, M. Bibes, Nature 460, 81 (2009)CrossRefGoogle Scholar
  5. 5.
    Y.B. Yuan, T.J. Reece, P.K. Sharma, S.S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J.S. Huang, Nat. Mater. 10, 296 (2011)CrossRefGoogle Scholar
  6. 6.
    S.M. Yang, J.Y. Jo, T.H. Kim, J.G. Yoon, T.K. Song, H.N. Lee, Z. Marton, S. Park, Y. Jo, T.W. Noh, Phys. Rev. B 82, 1487 (2010)Google Scholar
  7. 7.
    H.H. Wu, S.G. Cao, J.M. Zhu, T.Y. Zhang, Acta Mech. 228, 2811 (2017)CrossRefGoogle Scholar
  8. 8.
    X.F. Chen, X.L. Dong, F. Cao, J.X. Wang, G.S. Wang, J. Am. Ceram. Soc. 97, 213 (2014)CrossRefGoogle Scholar
  9. 9.
    W.J. Hu, D.-M. Juo, L. You, J. Wang, Y.-C. Chen, Y.-H. Chu, T. Wu, Sci. Rep. 4, 4772 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Ishibashi, H. Orihara, Integr. Ferroelectr. 9, 57 (1995)CrossRefGoogle Scholar
  11. 11.
    J.G. Wu, J.L. Zhu, D.Q. Xiao, J.G. Zhu, Appl. Phys. Lett. 91, 212905 (2007)CrossRefGoogle Scholar
  12. 12.
    Y.T. Pu, J.L. Zhu, X.H. Zhu, Y.S. Luo, M.S. Wang, X.H. Li, J. Liu, J.G. Zhu, D.Q. Xiao, J. Appl. Phys. 109, 044102 (2011)CrossRefGoogle Scholar
  13. 13.
    X.B. Ren, Nat. Mater. 3, 91 (2004)CrossRefGoogle Scholar
  14. 14.
    L.X. Zhang, X.B. Ren, Phys. Rev. B 71, 4108 (2005)Google Scholar
  15. 15.
    W.F. Liu, W. Chen, L. Yang, L.X. Zhang, Y. Wang, C. Zhou, S.T. Li, X.B. Ren, Appl. Phys. Lett. 89, 172908 (2006)CrossRefGoogle Scholar
  16. 16.
    S.N. Yun, X.L. Wang, J. Shi, D.L. Xu, J. Mater. Res. 24, 3073 (2009)CrossRefGoogle Scholar
  17. 17.
    Z.H. Zhao, Y.J. Dai, X.L. Li, Z. Zhao, X.W. Zhang, Appl. Phys. Lett. 108, 172906 (2016)CrossRefGoogle Scholar
  18. 18.
    Q. Simon, Y. Corredores, X. Castel, R. Benzerga, R. Sauleau, K. Mahdjoubi, A.L. Febvrier, S. Deputier, M. Guilloux-Viry, L. Zhang, P. Laurent, G. Tanne, Appl. Phys. Lett. 99, 325 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Li, Y. Li, Z. Zhou, R. Guo, A.S. Bhalla, Mater. Res. Bull. 49, 206 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Zhang, S. He, Z. Zhao, P.F. Wu, X.P. Wang, H.L. Liu, Sci. Rep. 8, 2892 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Pierangeli, M. Ferraro, F.D. Mei, G.D. Domenico, C.E.M. de Oliveira, A.J. Agranat, E. DelRe, Nat. Commun. 7, 10674 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Ferraro, D. Pierangeli, M. Flammini, G.D. Domenico, L. Falsi, F.D. Mei, A.J. Agranat, E. DelRe, Opt. Lett. 42, 3856 (2017)CrossRefGoogle Scholar
  23. 23.
    J.H. Chao, W. Zhu, C.J. Chen, A.L. Campbell, M.G. Henry, S. Yin, R.C. Hoffman, Opt. Express 25, 15481 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Tian, B. Yao, P. Tan, Z.X. Zhou, S. Guang, D.W. Gong, R. zhang, Appl. Phys. Lett. 106, 17760 (2015)Google Scholar
  25. 25.
    L.E. Cross, Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  26. 26.
    N. setter, L.E. Cross, J. Appl. Phys. 51, 4356 (1980)CrossRefGoogle Scholar
  27. 27.
    Q.N. Lu, J.X. Han, H.T. Dai, B.Z. Ge, S. Zhao, AIP Adv. 5, 5 (2015)Google Scholar
  28. 28.
    D.W. Gong, Y.G. Liang, W.J. Ou, J.J. Wang, Y. Wu, B. Liu, Z.X. Zhou, Mater. Res. Bull. 75, 7 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Rytz, A. Chatelain, U.T. Hochli, Phys. Rev. B 27, 6830 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Precision Instrument and Optoelectronics EngineeringTianjin UniversityTianjinChina
  2. 2.Key Laboratory of Opto-electronics Information TechnologyMinistry of EducationTianjinChina
  3. 3.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina

Personalised recommendations